更多“1、微分方程通解中独立的任意常数的个数等于().”相关问题
  • 第1题:

    微分方程y′′=x+sinx的通解是(C1,C2为任意常数):


    答案:B
    解析:

  • 第2题:

    微分方程y''=(y')2的通解是:
    A. lnx+c B. ln(x+c)
    C. c2+ln x+c1 D. c2-lnlx+c1
    (以上各式中,c1、c2为任意常数)


    答案:D
    解析:
    提示:此题为可降阶的高阶微分方程,按方程不显含变量y计算。


    y=c2-lnlx+c1

  • 第3题:

    微分方程(1+ 2y)xdx + (1+ x2 )dy = 0的通解为;

    (以上各式中,c 为任意常数)


    答案:B
    解析:

  • 第4题:

    为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为


    答案:
    解析:

  • 第5题:

    微分方程y''=(y')2的通解是:

    A. lnx+c
    B. ln(x+c)
    C. c2+ln x+c1
    D. c2-lnlx+c1
    (以上各式中,c1、c2为任意常数)

    答案:D
    解析:
    提示 此题为可降阶的高阶微分方程,按方程不显含变量y计算。


    y=c2-lnlx+c1 。

  • 第6题:

    微分方程y''=y'2的通解是( )(C1、C2为任意常数)。


    答案:D
    解析:
    提示:这是不显含y可降阶微分方程,令p=y',则dp/dx=y'',用分离变量法求解得,-y'=1/(x+C1) ,两边积分,可得y=C2-ln x+C1 ,故应选D,也可采用检验的方式。

  • 第7题:

    微分方程y′-y=1的通解为______.


    答案:
    解析:
    所给方程为可分离变量方程.

  • 第8题:

    微分方程y"=y’2的通解是()(C1、C2为任意常数)。

    • A、lnx+C
    • B、ln(x+C)
    • C、C2+ln
    • D、C2-ln

    正确答案:D

  • 第9题:

    单选题
    (2012)已知微分方程y′+p+(x)y=q(x)[q(x)≠0]有两个不同的特解y1(x),y2(x),则该微分方程的通解是:(c为任意常数)()
    A

    y=c(y1-y2)

    B

    y=c(y1+y2)

    C

    y=y1+c(y1+y2)

    D

    y=y1+c(y1-y2)


    正确答案: D
    解析: 暂无解析

  • 第10题:

    判断题
    微分方程的含有任意常数的解是该微分方程的通解。
    A

    B


    正确答案:
    解析: 暂无解析

  • 第11题:

    填空题
    设y=ex(c1sinx+c2cosx)(c1、c2为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为____。

    正确答案: y″-2y′+2y=0
    解析:
    根据题中所给的通解y=ex(c1sinx+c2cosx)的结构可知,所求方程对应的特征根为λ12=1±i,特征方程为[λ-(1+i)][λ-(1-i)]=λ2-2λ+2=0,则所求方程为y″-2y′+2y=0。

  • 第12题:

    微分方程y''+2y=0的通解是:

    (A,B为任意常数)


    答案:D
    解析:
    提示:本题为二次常系数线性齐次方程求通解,写出方程对应的特征方程r2+2 = 0,r =

  • 第13题:

    微分方程y,,-4y=4的通解是:(c1,c2为任意常数)


    答案:B
    解析:
    先求对应的齐次方程的通解,特征方程为r2 -4 = 0,特征根R 1,2 =±2,则齐次方程的通解又特解为-1,则方程的通解为
    点评:非齐次方程的通解由对应的齐次方程的通解和特解组成。

  • 第14题:

    微分方程(1+2y)xdx+(1+x2)dy 的通解为:

    (以上各式中,c为任意常数)


    答案:B
    解析:
    提示:方程为一阶可分离变量方程,分离变量后求解。

    ln(1+x2) +ln(1+2y) = 2lnc=lnc1,其中c1= c2
    故(1+x2)(1+2y)=c1

  • 第15题:

    微分方程ydx+(x-y)dy=0的通解是:(c为任意常数)


    答案:A
    解析:

  • 第16题:

    微分方程(1+2y)xdx+(1+x2)dy的通解为:(c为任意常数)


    答案:B
    解析:
    提示 方程为一阶可分离变量方程,分离变量后求解。

  • 第17题:

    微分方程yy'=1的通解为()


    答案:D
    解析:

  • 第18题:

    微分方程的含有任意常数的解是该微分方程的通解。


    正确答案:正确

  • 第19题:

    单选题
    微分方程y"=y’2的通解是()(C1、C2为任意常数)。
    A

    lnx+C

    B

    ln(x+C)

    C

    C2+ln

    D

    C2-ln


    正确答案: C
    解析: 暂无解析

  • 第20题:

    单选题
    (2008)微分方程y″=(y′)2的通解是:(c1,c2为任意常数)()
    A

    lnx+c

    B

    ln(x+C.

    C

    c2+ln│x+c1│

    D

    c2-ln│x+c1│


    正确答案: C
    解析: 暂无解析

  • 第21题:

    单选题
    二阶常系数非齐次线性微分方程y″-4y′+3y=2e2x的通解为y=(  )。
    A

    C1x+C2x3+2e2x(其中C1,C2为任意常数)

    B

    C1x+C2x3-2e2x(其中C1,C2为任意常数)

    C

    C1ex+C2e3x-2e2x(其中C1,C2为任意常数)

    D

    C1ex+C2e3x+2e2x(其中C1,C2为任意常数)


    正确答案: A
    解析:
    原微分方程为y″-4y′+3y=2e2x,对应齐次方程y″-4y′+3y=0的特征方程为r2-4r+3=0,特征根为r1=1,r2=3。故原方程所对应齐次方程的通解为y(_)=C1ex+C2e3x。设y*=Ae2x是原方程的特解,代入原方程解得A=-2,故原方程的通解为y=C1ex+C2e3x-2e2x,其中C1,C2为任意常数。

  • 第22题:

    单选题
    已知微分方程y′+p(x)y=q(x)(q(x)≠0)有两个不同的解y1(x),y2(x),C为任意常数,则该微分方程的通解是(  )。[2012年真题]
    A

    y=C(y1-y2

    B

    y=C(y1+y2

    C

    y=y1+C(y1+y2

    D

    y=y1+C(y1-y2


    正确答案: D
    解析:
    所给方程的通解等于其导出组的通解加上该方程对应齐次方程的一个特解,(y1-y2)是导出组的一个解,C(y1-y2)是导出组的通解。