更多“已知函数f(x)=x3 +ax2+b,曲线y=f(x)在点(1,1)处的切线为y=x.(I)求a,b;(II)求f(x)的单调区间,并说明它在各区间的单调性.”相关问题
  • 第1题:

    已知函数f(x)=x3-4x2.

    (I)确定函数f(x)在哪个区问是增函数,在哪个区间是减函数;

    (Ⅱ)求函数f(x)在区间[0,4]上的最大值和最小值.


    正确答案:

  • 第2题:

    设函数f(x)=x3-3x2-9x.求

    (I)函数f(x)的导数;

    (1I)函数f(x)在区间[1,4]的最大值与最小值.


    正确答案:

  • 第3题:

    求y=f(x)=2x3-3x2-12x+14的极值点和极值,以及函数曲线的凸凹性区间和拐点.


    答案:
    解析:
    y'=6x2-6x-12,y''=12x-6,令y'=0得驻点x1=-1,x2=2,当x2=2时,y''=18>0.所以f(z)在x=2处取极小值-6.当x1=-1时,y''<0.所以f(x)在x=-1处取极大值21.

  • 第4题:

    已知函数f(x)=㏑(x+2)-x2+bx+c,
    (1)若点P(-1,0)在f(x)的图象上,过点P的切线与直线y=-x+2平行,求f(x)的解析式;
    (2)若f(x)在区间[0,2]上单调递增,求b的取值范围。


    答案:
    解析:

  • 第5题:

    设(X,Y)的联合密度函数为f(x,y)=
      (1)求a;(2)求X,Y的边缘密度,并判断其独立性;(3)求.


    答案:
    解析:

  • 第6题:

    设函数f(x)在定义域I上的导数大于零,若对任意的x0∈I,曲线y=f(x)在点(x0,f(x0))处的切线与直线x=x0及x轴所围成区域的面积恒为4,且f(0)=2,求f(x)的表达式.


    答案:
    解析:

  • 第7题:

    设函数
    (I)求f(χ)的单调区间;
    (Ⅱ)求f(χ)的极值.


    答案:
    解析:

  • 第8题:


    (1)求函数y=f(x)的表达式;
    (2)讨论函数y=fx)在(0,+∞)内的单调性.


    答案:
    解析:

  • 第9题:

    求函数f(x)=x3-3x+1的单调区间和极值.


    答案:
    解析:
    函数的定义域为




    注意

    【评析】判定f(x)的极值,如果x0为f(x)的驻点或不可导的点,可以考虑利用极值的第一充分条件判定.但是当驻点处二阶导数易求时,可以考虑利用极值的第二充分条件判定.

  • 第10题:

    若连续函数y=f(x)在x0点不可导,则曲线y=f(x)在(x0,f(x0))点没有切线.


    正确答案:错误

  • 第11题:

    填空题
    函数y=f(x)是由方程xy+2lnx=y4所确定,则曲线y=f(x)在点(1,1)处的切线方程为____。

    正确答案: x-y=0
    解析:
    xy+2lnx=y4两端对x求导,得y+xy′+2/x=4y3·y′。x=1时,y=1,y′(1)=1,则切线方程为y-1=x-1,即x-y=0。

  • 第12题:

    单选题
    函数y=f(x)是由方程xy+2lnx=y4所确定,则曲线y=f(x)在点(1,1)处的切线方程为(  )。
    A

    x-y=0

    B

    x+y=0

    C

    -x-y=0

    D

    -x+y=0


    正确答案: C
    解析:
    xy+2lnx=y4两端对x求导,得y+xy′+2/x=4y3·y′。x=1时,y=1,y′(1)=1,则切线方程为y-1=x-1,即x-y=0。

  • 第13题:

    设函数f(x)=x4-4x+5.

    (I)求f(x)的单调区间,并说明它在各区间的单调性;

    (Ⅱ)求f(x)在区间[0,2]的最大值与最小值.


    正确答案:

  • 第14题:

    设函数f(x,y)=X2+Y2+xy+3,求f(x,y)的极值点与极值.


    答案:
    解析:

  • 第15题:

    已知函数(x)=x4-4x+1.
    (1)求(x)的单调区间和极值;
    (2)求曲线y=(x)的凹凸区间.


    答案:
    解析:

    列表如下,



    由表可知曲线(x)的单调递减区间为(-∞,1),单调递增区间为(1,+∞).由于"(x)=12x2≥0,所以为凹曲线,凹区间为(-∞,+∞),极小值为(1)=1-4+1=-2.

  • 第16题:

    函数f(x)=x3在闭区间[-1,1]上的最大值为_______.


    答案:
    解析:


    也单调递增,故最大值在X=1处取得,即为f(1)=1.

  • 第17题:

    已知曲线,其中函数f(t)具有连续导数,且f(0)=0,f'(t)>0(0).若曲线L的切线与x轴的交点到切点的距离恒为1,求函数f(t)的表达式,并求以曲线L及x轴和y轴为边界的区域的面积.


    答案:
    解析:

  • 第18题:

    已知函数f(x,y)=x+y+xy,曲线C:x^2+y^2+xy=3,求f(x,y)在曲线C上的最大方向导数.


    答案:
    解析:
    【分析】函数在一点处沿梯度方向的方向导数最大,进而转化为条件最值问题
    函数f(x,y)=x+y+xy在点(x,y)处的最大方向导数为

    构造拉格朗日函数

    (2)-(1)得(y-x)(2+λ)=0
    若y=x,则y=x=±1,若λ=-2,则x=-1,y=2或x=2,y=-1.
    把两个点坐标代入中,f(x,y)在曲线C上的最大方向导数为3.
    【评注】此题有一定新意,关键是转化为求条件极值问题.

  • 第19题:

    (本小题13分)已知函数f(x)=2x3-3x2,求
    (1)函数的单调区间;
    (2)函数f(x)在区间[-3,2]的最大值与最小值。


    答案:
    解析:

  • 第20题:

    设y=f(x)可导,点a0=2为f(x)的极小值点,且f(2)=3,则曲线y=f(x)在点(2,3)处的切线方程为______.


    答案:
    解析:
    由于y=f(x)可导,点x0=2为f(x)的极小值点,由极值的必要条件可知f′(2)=0.曲线y=fx)在点(2,3)处的切线方程为y-3=f′(2)(x-2)=0,即y=3为所求切线方程.

  • 第21题:

    求函数y=x-lnx的单调区间,并求该曲线在点(1,1)处的切线l的方程.


    答案:
    解析:


    【评析】求函数f(x)的单调区间,应先判定函数的定义域.求出函数的驻点,即y′=0的点;求出y的不可导的点,再找出y′>0时x的取值范围,这个范围可能是一个区间,也可能为几个区间.

  • 第22题:

    判断题
    若连续函数y=f(x)在x0点不可导,则曲线y=f(x)在(x0,f(x0))点没有切线.
    A

    B


    正确答案:
    解析: 暂无解析

  • 第23题:

    单选题
    函数y=f(x)是由方程xy+2lnx=y4所确定,则曲线y=f(x)在点(1,1)处的切线方程为(  )。
    A

    -x-y=0

    B

    x-y-1=0

    C

    x-y=0

    D

    x+y=0


    正确答案: A
    解析:
    xy+2lnx=y4两端对x求导,得y+xy′+2/x=4y3·y′。x=1时,y=1,y′(1)=1,则切线方程为y-1=x-1,即x-y=0。