已知向量组α1,α2,α3,α4线性无关,证明:α1+α2,α2+α3,α3+α4,α4-α1线性无关.
第1题:
向量组a=(1,2,3),b=(2,4,6)线性无关.
第2题:
求向量组(2,1,4,3), (-1,1,-6,6), (-1,-2,2,-9), (1,1,-2,7), (2,4,4,9)的秩并判断其是否线性相关:
A.3,线性相关
B.2,线性相关
C.2,线性无关
D.3,线性无关
第3题:
向量组 a=(1,2,3),b=(4,1,0),c=(1,-1,5)线性无关,则向量组a1=(2,1,3),b1=(1,4,0), c1=(-1,1,5)线性无关
第4题:
已知4阶方阵A=(α1, α2, α3,α4),其中α1, α2, α3,α4均为4维的列向量,且α2, α3, α4线性无关,α1 = 2α2- α3,如果β = α1 + α2 + α4,求线性方程组Ax = β的通解.
第5题:
向量组a=(1,2,3),b=(2,4,6)线性无关