若向量组α1,α2,α3,α4,α5线性相关,α1,α2,α3线性无关,则矩阵A=(α1,α2,α3,α4,α5)的秩R(A)____.A.R(A)>3B.R(A)≤5C.3<R(A)<5D.3≤R(A)<5

题目

若向量组α1,α2,α3,α4,α5线性相关,α1,α2,α3线性无关,则矩阵A=(α1,α2,α3,α4,α5)的秩R(A)____.

A.R(A)>3

B.R(A)≤5

C.3<R(A)<5

D.3≤R(A)<5


相似考题
更多“若向量组α1,α2,α3,α4,α5线性相关,α1,α2,α3线性无关,则矩阵A=(α1,α2,α3,α4,α5)的秩R(A)____.”相关问题
  • 第1题:

    设矩阵,α1,α2,α3为线性无关的3维列向量组,则向量组Aα1,Aα2,Aα3的秩为_________.


    答案:1、2.
    解析:
    因(Aα1,Aα2,Aα3)=A(α1,α2,α3),又α,α,α是三维线性无关列向量,所以(α1,α2,α3)为三阶可逆矩阵故r(Aα1,Aα2,Aα3)=r(A)=2.

  • 第2题:

    设α1,α2,α3,β是n维向量组,已知α1,α2,β线性相关,α2,α3,β线性无关,则下列结论中正确的是()。

    • A、β必可用α1,α2线性表示
    • B、α1必可用α2,α3,β线性表示
    • C、α1,α2,α3必线性无关
    • D、α1,α2,α3必线性相关

    正确答案:B

  • 第3题:

    设向量组A:α1=(1,0,5,2),α2=(-2,1,-4,1),α3=(-1,1,t,3),α4=(-2,1,-4,1)线性相关,则t必定等于().

    • A、1
    • B、2
    • C、3
    • D、任意数

    正确答案:D

  • 第4题:

    单选题
    设向量组A:a1=(1,0,5,2),a2=(-2,1,-4,1),a3=(-1,1,t,3),a4=(-2,1,-4,1)线性相关,则t必定等于().
    A

    1

    B

    2

    C

    3

    D

    任意数


    正确答案: A
    解析: 暂无解析

  • 第5题:

    填空题
    已知向量组(α1,α3),(α1,α3,α4),(α2,α3,)都线性无关,而(α1,α2,α3,α4)线性相关,则向量组(α1,α2,α3,α4)的极大无关组是____.

    正确答案: 134)
    解析:
    向量组(α1,α2,α3,α4)线性相关,则其极大线性无关组最多含三个向量,又(α1,α3,α4)线性无关,故知(α1,α3,α4)为其极大线性无关组.

  • 第6题:

    单选题
    已知向量组α(→)1,α(→)2,α(→)3,α(→)4线性无关,则(  )。
    A

    α()1α()2α()2α()3α()3α()4α()4α()1线性无关

    B

    α()1α()2α()2α()3α()3α()4α()4α()1线性无关

    C

    α()1α()2α()2α()3α()3α()4α()4α()1线性无关

    D

    α()1α()2α()2α()3α()3α()4α()4α()1线性无关


    正确答案: D
    解析:
    A项,(α()1α()2)+(α()3α()4)-(α()2α()3)-(α()4α()1)=0(),知此组向量不一定线性无关;
    B项,全部相加为0(),此组向量不一定线性相关;
    C项,设有数k1,k2,k3,k4,使k1α()1α()2)+k2α()2α()3)+k3α()3α()4)+k4α()4α()1)=0(),即(k1-k4α()1+(k1+k2α()2+(k2+k3α()3+(k3+k4α()40()。因α()1α()2α()3α()4线性无关,则k1-k4,k1+k2,k2+k3,k3+k4全为0,故k1,k2,k3,k4全为0,所以此组向量线性无关;
    D项,因(α()1α()2)-(α()2α()3)+(α()3α()4)+(α()4α()1)=0()

  • 第7题:

    单选题
    设α1,α2,α3,β是n维向量组,已知α1,α2,β线性相关,α2,α3,β线性无关,则下列结论中正确的是(  )。[2012年真题]
    A

    β必可用α1,α2线性表示

    B

    α1必可用α2,α3,β线性表示

    C

    α1,α2,α3必线性无关

    D

    α1,α2,α3必线性相关


    正确答案: B
    解析:
    由α1,α2,β线性相关知,α1,α2,α3,β线性相关。再由α2,α3,β线性无关, α1必可用α2,α3,β线性表示。

  • 第8题:

    单选题
    设α1,α2,α3,β是n维向量组,已知α1,α2,β线性相关,α2,α3,β线性无关,则下列结论中正确的是()。
    A

    β必可用α1,α2线性表示

    B

    α1必可用α2,α3,β线性表示

    C

    α1,α2,α3必线性无关

    D

    α1,α2,α3必线性相关


    正确答案: B
    解析: 暂无解析

  • 第9题:

    单选题
    设α(→)1,α(→)2,…,α(→)s均为n维列向量,A是m×n矩阵,下列选项正确的是(  )。
    A

    α()1α()2,…,α()s线性相关,则Aα()1,Aα()2,…,Aα()s线性相关

    B

    α()1α()2,…,α()s线性相关,则Aα()1,Aα()2,…,Aα()s线性无关

    C

    α()1α()2,…,α()s线性无关,则Aα()1,Aα()2,…,Aα()s线性相关

    D

    α()1α()2,…,α()s线性无关,则Aα()1,Aα()2,…,Aα()s线性无关


    正确答案: A
    解析:
    设有数k1,k2,…,ks,使k1α()1+k2α()2+…+ksα()s0(),则有A(k1α()1+k2α()2+…+ksα()s)=k1Aα()1+k2Aα()2+…+ksAα()s0()。因α()1α()2,…,α()s线性相关,故k1,k2,…,ks不全为0,知Aα()1,Aα()2,…,Aα()s线性相关。

  • 第10题:

    设向量组I:α1α2αr…,可由向量组Ⅱβ1,β2,…βs:线性表示,下列命题正确的是( )。

    A.若向量组I线性无关.则r≤S
    B.若向量组I线性相关,则r>s
    C.若向量组Ⅱ线性无关,则r≤s
    D.若向量组Ⅱ线性相关,则r>s

    答案:A
    解析:
    由于向量组I能由向量组Ⅱ线性表示,所以r(I)≤r(Ⅱ),即

  • 第11题:

    设有向量组α1=(2,1,4,3)T,α1=(-1,1,-6,6)T,α3=(-1,-2,2,-9)T,α4=(1,1,-2,7)T,α5=(2,4,4,9)T,则向量组α1,α2,α3,α4,α5的秩是()。

    • A、1
    • B、2
    • C、3
    • D、4

    正确答案:C

  • 第12题:

    单选题
    设有向量组α(→)1=(1,-1,1,0),α(→)2=(1,2,-1,0),α(→)3=(0,1,1,1),α(→)4=(2,2,1,1),则以下命题正确的是(  )。
    A

    α()1线性相关

    B

    α()1α()2线性相关

    C

    α()1α()2α()3线性相关

    D

    α()1α()2α()3α()4线性相关


    正确答案: D
    解析:
    A项,因α()1≠0,故α()1线性无关;
    B项,因α()1α()2坐标不成比例,故α()1α()2线性无关;
    C项,由r(α()1α()2α()3)=3,故α()1α()2α()3线性无关;
    D项,因r(α()1α()2α()3α()4)=3,故α()1α()2α()3α()4线性相关。

  • 第13题:

    单选题
    设向量组α(→)1,α(→)2,…,α(→)s的秩为r,则(  )。
    A

    必定r<s

    B

    向量组中任意个数小于r的部分组线性无关

    C

    向量组中任意r个向量线性无关

    D

    若s>r,则向量组中任意r+l个向量必线性相关


    正确答案: A
    解析:
    A项,r可能与s相等;
    B项,若r<s,向量组中可以有两个向量成比例;
    C项,当r小于s/2时,r个向量可能相关;
    D项,任意r+1个向量若不线性相关,则向量组的秩为r+1,故必相关。

  • 第14题:

    单选题
    已知向量组α1=(3,2,-5)T,α2=(3,-1,3)T,α3=(1,-1/3,1)T,α4=(6,-2,6)T,则该向量组的一个极大线性无关组是(  )。[2013年真题]
    A

    α2,α4

    B

    α3,α4

    C

    α1,α2

    D

    α2,α3


    正确答案: B
    解析: 极大线性无关组的个数即为向量组的秩,线性无关组个数公式为:

  • 第15题:

    问答题
    设向量组α1,α2,…,α5的秩为r>0,证明:(1)α1,α2,…,α5中任意r个线性无关的向量都构成它的一个极大线性无关组;(2)若α1,α2,…,α5中每个向量都可由其中某r个向量线性表示,则这r个向量必为α1,α2,…,α5的一个极大线性无关组。

    正确答案:
    (1)设①:αj1j2,…,αjr是α12,…,αs中任意r个线性无关的向量,由于向量组的秩为r,故向量组中任意多余r个向量的向量组必线性相关,所以
    αj1j2,…,αjri(i=1,2,…,s;i≠j1,j2,…,jr)
    线性相关,从而①为原向量组的极大线性无关组.
    (2)设①:αj1j2,…,αjr是α12,…,αs中的r个向量,且原向量组中每个向量都可由①线性表示,则原向量组与向量组①等价.等价向量组有相同的秩,原向量组的秩为r,所以向量组①的秩为r.又向量组①只含r个向量,故向量组①线性无关,因此①是原向量组的极大线性无关组.
    解析: 暂无解析

  • 第16题:

    单选题
    设向量组α(→)1,α(→)2,α(→)3线性无关,向量β(→)1可由α(→)1,α(→)2,α(→)3线性表示,而向量β(→)2不能由α(→)1,α(→)2,α(→)3线性表示,则对任意常数,必有(  )。
    A

    α()1α()2α()3,kβ()1β()2线性无关

    B

    α()1α()2α()3,kβ()1β()2线性相关

    C

    α()1α()2α()3β()1+kβ()2线性无关

    D

    α()1α()2α()3β()1+kβ()2线性相关


    正确答案: D
    解析:
    取k=0则可排除B,C选项,取k=1则可排除D选项。或根据定义证明α()1α()2α()3,kβ()1β()2线性无关。

  • 第17题:

    单选题
    已知向量组(α(→)1,α(→)3),(α(→)1,α(→)3,α(→)4),(α(→)2,α(→)3)都线性无关,而(α(→)1,α(→)2,α(→)3,α(→)4)线性相关,则向量组(α(→)1,α(→)2,α(→)3,α(→)4)的极大无关组是(  )。
    A

    α()1α()2α()3

    B

    α()1α()2α()4

    C

    α()1α()3α()4

    D

    α()2α()3α()4


    正确答案: B
    解析:
    向量组(α()1α()2α()3α()4)线性相关,则其极大线性无关组最多含三个向量,又(α()1α()3α()4)线性无关,故知(α()1α()3α()4)为其极大线性无关组。

  • 第18题:

    单选题
    设向量α1、α2、α3线性无关,向量β1可由αl、α2、α3线性表示,向量β2不能由α1、α2、α3线性表示,则对任意常数k必有(  ).
    A

    α1、α2、α3、kβ12线性无关

    B

    α1、α2、α3、kβ12线性相关

    C

    α1、α2、α3、β1+kβ2线性元关

    D

    α1、α2、α3、β1+kβ2线性相关


    正确答案: D
    解析:
    向量组α1,α2,α3,kβ12对任意常数k必线性无关;向量组α1,α2,α3,β1+kβ2,当k=0时,线性相关,当k≠0时,线性无关.