若使向量组α1=(6,t,7)T,α2=(4,2,2)T,α3=(4,1,0)T线性相关,则t等于(  )。 A、 -5 B、 5 C、 -2 D、 2

题目
若使向量组α1=(6,t,7)T,α2=(4,2,2)T,α3=(4,1,0)T线性相关,则t等于(  )。

A、 -5
B、 5
C、 -2
D、 2

相似考题
更多“若使向量组α1=(6,t,7)T,α2=(4,2,2)T,α3=(4,1,0)T线性相关,则t等于(  )。 ”相关问题
  • 第1题:

    设α,β为三维列向量,矩阵A=αα^T+ββ^T,其中α^T,β^T分别是α,β的转置.证明:
      (Ⅰ)秩r(A)≤2;
      (Ⅱ)若α,β线性相关,则秩r(A)<2.


    答案:
    解析:
    【证明】(Ⅰ)因为α,β为三维列向量,那么αα^T和ββ^T都是三阶矩阵,
    且秩r(αα^T)≤1,r(ββ^T)≤1.
    那么,r(A)=r(αα^T+ββ^T)≤r(αα^T)+r(ββ^T)≤2.
    (Ⅱ)由于α,β线性相关,不妨设α=kβ,于是
    r(A)=r(αα^T+ββ^T)=r((1+k^2)ββ^T)≤r(β)≤1<2.
    【评注】本题考查矩阵秩的性质公式.
    (Ⅰ)中有两个基本知识点:①r(αα^T)≤1和②r(A+B)≤r(A)+r(B).
    (Ⅱ)中有两个基本知识点:①α,β线性相关的几何意义和②r(kA)=r(A),k≠0.
    注意,如果分块矩阵比较熟悉,本题的(Ⅰ)也可如下处理:
    因为

    那么
    从而r(A)≤2.

  • 第2题:

    设向量组α1=(1,0,1)T,α2=(0,1,1)T,a3=(1,3,5)T,不能由向量组β1,=(1,1,1)T,f12=(1,2,3)T,3β=(3,4,α)T线性表示。
    (1)求a的值;
    (2)将β1β2β2由α1α2α3线性表示。


    答案:
    解析:
    (1)由于α1,α2,α3不能由β1β2β3,线性表示,对(β1,β2,β3,α1,α2,α3进行初等变换∶

    故β1=2α1+4α2-α3,β2=α1+2α2,β3=5α1+10α2-2α3

  • 第3题:

    已知向量组α1=(3,2,-5)T,α2=(3,-1,3)T,,α4=(6,-2,6)T,则该向量组的一个极大无关组是()。

    • A、α2,α4
    • B、α3,α4
    • C、α1,α2
    • D、α2,α3

    正确答案:C

  • 第4题:

    设向量组A:α1=(1,-1,0),α2=(2,1,t),α3=(0,1,1)线性相关,则t等于()。

    • A、1
    • B、2
    • C、3
    • D、0

    正确答案:C

  • 第5题:

    设向量组A:α1=(1,0,5,2),α2=(-2,1,-4,1),α3=(-1,1,t,3),α4=(-2,1,-4,1)线性相关,则t必定等于().

    • A、1
    • B、2
    • C、3
    • D、任意数

    正确答案:D

  • 第6题:

    单选题
    若使向量组a1=(6,t,7)T,a2=(4,2,2)T,a3=(4,1,0)T线性相关。则t等于(   )
    A

    -5

    B

    5

    C

    -2

    D

    2


    正确答案: D
    解析:

  • 第7题:

    单选题
    设向量组A:a1=(1,0,5,2),a2=(-2,1,-4,1),a3=(-1,1,t,3),a4=(-2,1,-4,1)线性相关,则t必定等于().
    A

    1

    B

    2

    C

    3

    D

    任意数


    正确答案: A
    解析: 暂无解析

  • 第8题:

    单选题
    设向量组A:α1=(t,1,1),α2=(1,t,1),α3=(1,1,t)的秩为2,则t等于().
    A

    1

    B

    -2

    C

    1或-2

    D

    任意数


    正确答案: D
    解析: 暂无解析

  • 第9题:

    单选题
    已知向量组α1=(3,2,-5)T,α2=(3,-1,3)T,,α4=(6,-2,6)T,则该向量组的一个极大无关组是()。
    A

    α2,α4

    B

    α3,α4

    C

    α1,α2

    D

    α2,α3


    正确答案: C
    解析: 暂无解析

  • 第10题:

    单选题
    设α(→)1,α(→)2,…,α(→)s和β(→)1,β(→)2,…,β(→)t为两个n维向量组,且秩(α(→)1,α(→)2,…,α(→)s)=秩(β(→)1,β(→)2,…,β(→)t)=r,则(  )。
    A

    此两个向量组等价

    B

    秩(α()1α()2,…,α()sβ()1β()2,…,β()t)=r

    C

    α()1α()2,…,α()s可以由β()1β()2,…,β()t线性表示时,此二向量组等价

    D

    s=t时,二向量组等价


    正确答案: C
    解析:
    两向量组等价的充要条件是所含向量的个数相等,且能相互线性表示。

  • 第11题:

    单选题
    设向量组(Ⅰ):α(→)1=(a11,a21,a31)T,α(→)2=(a12,a22,a32)T,α(→)3=(a13,a23,a33)T;向量组(Ⅱ):β(→)1=(a11,a21,a31,a41)T,β(→)2=(a12,a22,a32,a42)T,β(→)3=(a13,a23,a33,a43)T,则(  )。
    A

    (Ⅰ)相关⇒(Ⅱ)相关

    B

    (Ⅰ)无关⇒(Ⅱ)无关

    C

    (Ⅰ)无关⇒(Ⅱ)相关

    D

    (Ⅰ)相关⇒(Ⅱ)无关


    正确答案: A
    解析:
    结论:一组向量线性无关,则每个向量添加分量后仍然线性无关。

  • 第12题:

    设α1=(1,2,-1,0)^T,α2=(1,1,0,2)^T,α3=(2,1,1,α)^T.若由α1,α2,α3生成的向量空间的维数为2,则α=________.


    答案:1、6.
    解析:
    本题考查向量空间及其维数的概念,因为α1,α2,α3所生成的向量空间是2维,亦即向量组的秩r(α1,α2,α3)=2 

    由秩为2,知α=6.

  • 第13题:

    已知λ= 2是三阶矩A的一个特征值,α1、α2是A的属于λ= 2的特征向量。 若α1=(1,2,0)T,α2=(1,0,1)T,向量β= (-1,2,-2)T,则Aβ等于( )。
    A. (2,2,1)T B. (-1,2,-2)T C. (-2,4,-4)T D. (-2,-4,4)


    答案:C
    解析:

  • 第14题:

    设向量组A:α1=(t,1,1),α2=(1,t,1),α3=(1,1,t)的秩为2,则t等于().

    • A、1
    • B、-2
    • C、1或-2
    • D、任意数

    正确答案:B

  • 第15题:

    设有向量组α1=(2,1,4,3)T,α1=(-1,1,-6,6)T,α3=(-1,-2,2,-9)T,α4=(1,1,-2,7)T,α5=(2,4,4,9)T,则向量组α1,α2,α3,α4,α5的秩是()。

    • A、1
    • B、2
    • C、3
    • D、4

    正确答案:C

  • 第16题:

    填空题
    设α(→)1=(2,1,0,5)T,α(→)2=(-4,-2,3,0)T,α(→)3=(-1,0,1,k)T,α(→)4=(-1,0,2,1)T,则k=____时,α(→)1,α(→)2,α(→)3,α(→)4线性相关。

    正确答案: -7/3
    解析: {α()1α()2α()3α()4线性相关,则|α()1α()2α()3α()4|=0,即

  • 第17题:

    单选题
    设n维行向量α=(1/2,0,…,0,1/2),矩阵A=E-αTα,B=E+2αTα,其中E为n阶单位矩阵,则AB等于(  )。
    A

    O

    B

    -E

    C

    E

    D

    E+αTα


    正确答案: D
    解析:
    注意利用ααT=1/2来简化计算。AB=(E-αTα)(E+2αTα)=E+2αTα-αTα-2αTααTα=E+αTα-2αT(ααT)α=E+αTα-2·(1/2)αTα=E。

  • 第18题:

    单选题
    已知四元非齐次方程组AX(→)=b(→),r(A)=3,α(→)1,α(→)2,α(→)3是它的三个解向量,且α(→)1+α(→)2=(1,1,0,2)T,α(→)2+α(→)3=(l,0,1,3)T,则AX(→)=b(→)的通解是(  )。
    A

    k(0,1,1,1)T+(1,1,0,2)T/2

    B

    k(0,1,-1,-1)T+(1,1,0,2)T/2

    C

    k(0,1,1,-1)T+(1,1,0,2)T/2

    D

    k(0,1,-1,1)T+(1,1,0,2)T/2


    正确答案: C
    解析:
    由Aα()1b(),Aα()2b(),故A[(α()1α()2)/2]=b(),则(α()1α()2)/2是方程组AX()b()的特解。又r(A)=3,故四元齐次方程组AX()b()的基础解系只含有一个解向量。由α()1α()3是AX()b()的解向量,知α()1α()3是齐次方程组AX()0()的解,而α()1α()3=(α()1α()2)-(α()2α()3)=(0,1,-1,-1)T,故AX()b()的通解为k(0,1,-1,-1)T+(1,1,0,2)T/2。

  • 第19题:

    单选题
    已知向量组α1=(3,2,-5)T,α2=(3,-1,3)T,α3=(1,-1/3,1)T,α4=(6,-2,6)T,则该向量组的一个极大线性无关组是(  )。[2013年真题]
    A

    α2,α4

    B

    α3,α4

    C

    α1,α2

    D

    α2,α3


    正确答案: B
    解析: 极大线性无关组的个数即为向量组的秩,线性无关组个数公式为:

  • 第20题:

    单选题
    设n维向量组(Ⅰ)α(→)1,α(→)2,…,α(→)s线性无关,(Ⅱ)β(→)1,β(→)2,…,β(→)t线性无关,且α(→)i不能由(Ⅱ)线性表示(i=1,2,…,s),且β(→)j不能由(Ⅰ)线性表示(j=1,2,…,t),则向量组α(→)1,α(→)2,…,α(→)s,β(→)1,β(→)2,…,β(→)t(  )。
    A

    一定线性相关

    B

    一定线性无关

    C

    可能线性相关,也可能线性无关

    D

    既不线性相关,也不线性无关


    正确答案: C
    解析:
    设(Ⅰ):α()1=(1,0,0),α()2=(1,1,0),(Ⅱ):β()1=(0,0,1),β()2=(0,1,1)。则向量组(Ⅰ)和(Ⅱ)各自线性无关,但α()1α()2β()1β()2线性相关;
    令(Ⅱ):β()1=(0,0,1),α()1α()2β()1也满足条件,但α()1α()2β()1线性无关。

  • 第21题:

    单选题
    已知四元非齐次方程组AX(→)=b(→),r(A)=3,α(→)1,α(→)2,α(→)3是它的三个解向量,且α(→)1+α(→)2=(1,1,0,2)T,α(→)2+α(→)3=(l,0,1,3)T,则AX(→)=b(→)的通解是(  )。
    A

    k(0,1,-1,-1)T+(1,1,0,2)T

    B

    k(0,1,-1,-1)T+(1,1,0,2)T/2

    C

    k(1,1,0,2)T+(0,1,-1,-1)T

    D

    k(1,1,0,2)T+(0,1,-1,-1)T/2


    正确答案: D
    解析:
    由Aα()1b(),Aα()2b(),故A[(α()1α()2)/2]=b(),则(α()1α()2)/2是方程组AX()b()的特解。
    又r(A)=3,故四元齐次方程组AX()b()的基础解系只含有一个解向量。由α()1α()3是AX()b()的解向量,知α()1α()3是齐次方程组AX()0()的解,而α()1α()3=(α()1α()2)-(α()2α()3)=(0,1,-1,-1)T,故AX()b()的通解为k(0,1,-1,-1)T+(1,1,0,2)T/2。