已知向量组a1==(3,2,-5)T,a2= (3,-1,3)T,a3 = (1,-1/3,1)T,a4 =(6,-2,6)T,则该向量组的一个极大线性无关组是: A.a2,a4 B.a3,a4 C.a1,a2 D.a2,a3

题目
已知向量组a1==(3,2,-5)T,a2= (3,-1,3)T,a3 = (1,-1/3,1)T,a4 =(6,-2,6)T,则该向量组的一个极大线性无关组是:

A.a2,a4
B.a3,a4
C.a1,a2
D.a2,a3

相似考题
参考答案和解析
答案:C
解析:
更多“已知向量组a1==(3,2,-5)T,a2= (3,-1,3)T,a3 = (1,-1/3,1)T,a4 =(6,-2,6)T,则该向量组的一个极大线性无关组是: ”相关问题
  • 第1题:

    设a1,a2,a3均为3维向量,则对任意常数k,l,向量组线性无关是向量组a1,a2,a3线性无关的( )

    A.必要非充分条件
    B.充分非必要条件
    C.充分必要条件
    D.既非充分也非必要条件

    答案:A
    解析:

  • 第2题:

    设向量组A:a1=(1,0,5,2),a2=(-2,1,-4,1),a3=(-1,1,t,3),a4=(-2,1,-4,1)线性相关,则t必定等于( ).

    A.1
    B.2
    C.3
    D.任意数

    答案:D
    解析:

  • 第3题:

    求向量组a1=(1,1,1,k),a2=(1,1,k,1),a3=(1,2,1,1)的秩和一个极大无关组


    答案:
    解析:

  • 第4题:

    已知al,a2,a3,a4是四维非零列向量,记A=(a1,a2,a3,a4),A+是A的伴随矩阵,若齐次方程组AX=0的基础解系为(1,0,-2,0)T,则AX=0的基础解系为( )。

    A、al a2
    B、a1 a3
    C、al a2 a3
    D、a2 a3 a4

    答案:D
    解析:
    AX=0的基础解系只含有一个向量,所以矩阵A的秩为3,所以A存在不为0的3阶子 即a1-2a3=0,所以a1与a3线性相关。而方程组的基本解系必须是线性相关的向量,所以正确答案为D。

  • 第5题:

    已知向量组α1=(3,2,-5)T,α2=(3,-1,3)T,,α4=(6,-2,6)T,则该向量组的一个极大无关组是()。

    • A、α2,α4
    • B、α3,α4
    • C、α1,α2
    • D、α2,α3

    正确答案:C

  • 第6题:

    单选题
    若使向量组a1=(6,t,7)T,a2=(4,2,2)T,a3=(4,1,0)T线性相关。则t等于(   )
    A

    -5

    B

    5

    C

    -2

    D

    2


    正确答案: D
    解析:

  • 第7题:

    填空题
    已知向量组(α1,α3),(α1,α3,α4),(α2,α3,)都线性无关,而(α1,α2,α3,α4)线性相关,则向量组(α1,α2,α3,α4)的极大无关组是____.

    正确答案: 134)
    解析:
    向量组(α1,α2,α3,α4)线性相关,则其极大线性无关组最多含三个向量,又(α1,α3,α4)线性无关,故知(α1,α3,α4)为其极大线性无关组.

  • 第8题:

    问答题
    设向量组α1,α2,…,α5的秩为r>0,证明:(1)α1,α2,…,α5中任意r个线性无关的向量都构成它的一个极大线性无关组;(2)若α1,α2,…,α5中每个向量都可由其中某r个向量线性表示,则这r个向量必为α1,α2,…,α5的一个极大线性无关组。

    正确答案:
    (1)设①:αj1j2,…,αjr是α12,…,αs中任意r个线性无关的向量,由于向量组的秩为r,故向量组中任意多余r个向量的向量组必线性相关,所以
    αj1j2,…,αjri(i=1,2,…,s;i≠j1,j2,…,jr)
    线性相关,从而①为原向量组的极大线性无关组.
    (2)设①:αj1j2,…,αjr是α12,…,αs中的r个向量,且原向量组中每个向量都可由①线性表示,则原向量组与向量组①等价.等价向量组有相同的秩,原向量组的秩为r,所以向量组①的秩为r.又向量组①只含r个向量,故向量组①线性无关,因此①是原向量组的极大线性无关组.
    解析: 暂无解析

  • 第9题:

    问答题
    设向量组α(→)1,α(→)2,…,α(→)s的秩为r>0,证明:  (1)α(→)1,α(→)2,…,α(→)s中任意r个线性无关的向量都构成它的一个极大线性无关组;  (2)若α(→)1,α(→)2,…,α(→)s中每个向量都可由其中某r个向量线性表示,则这r个向量必为α(→)1,α(→)2,…,α(→)s的一个极大线性无关组。

    正确答案:
    (1)设①:α()j1,α()j2,…,α()jrα()1,α()2,…,α()s中任意r个线性无关的向量,由于向量组的秩为r,故向量组中任意多于r个向量的向量组必线性相关,所以α()j1,α()j2,…,α()jr,α()i(i=1,2,…,s;i≠j1,j2,…,jr)线性相关,从而①为原向量组的极大线性无关组。
    (2)设①:α()j1,α()j2,…,α()jrα()1,α()2,…,α()s中的r个向量,且原向量组中每个向量都可由①线性表示,则原向量组与向量组①等价。等价向量组有相同的秩,原向量组的秩为r,所以向量组①的秩为r。又向量组①只含r个向量,故向量组①线性无关,因此由(1)的结论有①是原向量组的极大线性无关组。
    解析: 暂无解析

  • 第10题:

    单选题
    设α(→)1,α(→)2,…,α(→)s和β(→)1,β(→)2,…,β(→)t为两个n维向量组,且秩(α(→)1,α(→)2,…,α(→)s)=秩(β(→)1,β(→)2,…,β(→)t)=r,则(  )。
    A

    此两个向量组等价

    B

    秩(α()1α()2,…,α()sβ()1β()2,…,β()t)=r

    C

    α()1α()2,…,α()s可以由β()1β()2,…,β()t线性表示时,此二向量组等价

    D

    s=t时,二向量组等价


    正确答案: C
    解析:
    两向量组等价的充要条件是所含向量的个数相等,且能相互线性表示。

  • 第11题:

    设向量组A:a1=(t,1,1),a2=(1,t,1),a3=(1,1,t)的秩为2,则t等于( ).

    A.1
    B.-2
    C.1或-2
    D.任意数

    答案:B
    解析:

  • 第12题:

    若使向量组α1=(6,t,7)T,α2=(4,2,2)T,α3=(4,1,0)T线性相关,则t等于(  )。

    A、 -5
    B、 5
    C、 -2
    D、 2

    答案:B
    解析:
    α1、α2、α3三个列向量线性相关,则由三个向量组成的行列式对应的值为零,即



    解得:t=5。

  • 第13题:

    在线性空间R3中,已知向量a1=(1,2,1),a2=(2,1,4),a3=(0,-3,2),
    记V1={λa1+μa2|λ,μ∈R},V2={ka3|k∈R}。
    令V3={t1η1+t2η2|t1,t2∈R,η1∈V1,η2∈V2}。
    (1)求子空间V3的维数;
    (2)求子空间V3的一组标准正交基。


    答案:
    解析:

  • 第14题:

    设向量组α1=(1,0,1)T,α2=(0,1,1)T,a3=(1,3,5)T,不能由向量组β1,=(1,1,1)T,f12=(1,2,3)T,3β=(3,4,α)T线性表示。
    (1)求a的值;
    (2)将β1β2β2由α1α2α3线性表示。


    答案:
    解析:
    (1)由于α1,α2,α3不能由β1β2β3,线性表示,对(β1,β2,β3,α1,α2,α3进行初等变换∶

    故β1=2α1+4α2-α3,β2=α1+2α2,β3=5α1+10α2-2α3

  • 第15题:

    设有向量组α1=(2,1,4,3)T,α1=(-1,1,-6,6)T,α3=(-1,-2,2,-9)T,α4=(1,1,-2,7)T,α5=(2,4,4,9)T,则向量组α1,α2,α3,α4,α5的秩是()。

    • A、1
    • B、2
    • C、3
    • D、4

    正确答案:C

  • 第16题:

    单选题
    设向量组A:a1=(1,0,5,2),a2=(-2,1,-4,1),a3=(-1,1,t,3),a4=(-2,1,-4,1)线性相关,则t必定等于().
    A

    1

    B

    2

    C

    3

    D

    任意数


    正确答案: A
    解析: 暂无解析

  • 第17题:

    单选题
    已知向量组α1=(3,2,-5)T,α2=(3,-1,3)T,α3=(1,-1/3,1)T,α4=(6,-2,6)T,则该向量组的一个极大线性无关组是(  )。[2013年真题]
    A

    α2,α4

    B

    α3,α4

    C

    α1,α2

    D

    α2,α3


    正确答案: B
    解析: 极大线性无关组的个数即为向量组的秩,线性无关组个数公式为:

  • 第18题:

    单选题
    已知向量组α1=(3,2,-5)T,α2=(3,-1,3)T,,α4=(6,-2,6)T,则该向量组的一个极大无关组是()。
    A

    α2,α4

    B

    α3,α4

    C

    α1,α2

    D

    α2,α3


    正确答案: C
    解析: 暂无解析

  • 第19题:

    单选题
    设n维向量组(Ⅰ)α(→)1,α(→)2,…,α(→)s线性无关,(Ⅱ)β(→)1,β(→)2,…,β(→)t线性无关,且α(→)i不能由(Ⅱ)线性表示(i=1,2,…,s),且β(→)j不能由(Ⅰ)线性表示(j=1,2,…,t),则向量组α(→)1,α(→)2,…,α(→)s,β(→)1,β(→)2,…,β(→)t(  )。
    A

    一定线性相关

    B

    一定线性无关

    C

    可能线性相关,也可能线性无关

    D

    既不线性相关,也不线性无关


    正确答案: C
    解析:
    设(Ⅰ):α()1=(1,0,0),α()2=(1,1,0),(Ⅱ):β()1=(0,0,1),β()2=(0,1,1)。则向量组(Ⅰ)和(Ⅱ)各自线性无关,但α()1α()2β()1β()2线性相关;
    令(Ⅱ):β()1=(0,0,1),α()1α()2β()1也满足条件,但α()1α()2β()1线性无关。

  • 第20题:

    单选题
    已知向量组(α(→)1,α(→)3),(α(→)1,α(→)3,α(→)4),(α(→)2,α(→)3)都线性无关,而(α(→)1,α(→)2,α(→)3,α(→)4)线性相关,则向量组(α(→)1,α(→)2,α(→)3,α(→)4)的极大无关组是(  )。
    A

    α()1α()2α()3

    B

    α()1α()2α()4

    C

    α()1α()3α()4

    D

    α()2α()3α()4


    正确答案: B
    解析:
    向量组(α()1α()2α()3α()4)线性相关,则其极大线性无关组最多含三个向量,又(α()1α()3α()4)线性无关,故知(α()1α()3α()4)为其极大线性无关组。