参考答案和解析
答案:
解析:
更多“设A,B为同阶矩阵,且.证明当且仅当”相关问题
  • 第1题:

    设A是三阶矩阵,且|A|=4,则=_______.


    答案:1、2
    解析:

  • 第2题:

    设A=,B为三阶非零矩阵,且AB=O,则r(A)=_______.


    答案:1、2
    解析:
    因为AB=0,所以r(A)+r(B)≤3,又因为B≠0,所以r(B)≥1,从而有r(A)≤2,显然A有两行不成比例,故r(A)≥2,于是r(A)=2.

  • 第3题:

    设A,B为同阶方阵, (1)若A,B相似,证明A,B 的特征多项式相等. (2)举一个二阶方阵的例子说明(1)的逆命题不成立. (3)当A,B均为实对称矩阵时,证明(1)的逆命题成立


    答案:
    解析:

  • 第4题:

    设A为n阶矩阵,且|A|=0,≠0,则AX=0的通解为_______.


    答案:
    解析:

  • 第5题:

    设A为n阶非零矩阵,且存在自然数k,使得A^k=O.证明:A不可以对角化.


    答案:
    解析:

  • 第6题:

    设A、B、C为同阶矩阵,且C为非奇异矩阵,满足,求证:


    答案:
    解析:

  • 第7题:

    设n阶矩阵A可逆,且detA=a,求,.


    答案:
    解析:

  • 第8题:

    设A,B为三阶矩阵,且满足方程.若矩阵,求矩阵B.


    答案:
    解析:

  • 第9题:

    设A为m×n阶实矩阵,且r(A)=n.证明:A^TA的特征值全大于零.


    答案:
    解析:

  • 第10题:

    设A为3阶实对称矩阵,A的秩为2,且. (Ⅰ)求A的特征值与特征向量; (Ⅱ)求矩阵A


    答案:
    解析:

  • 第11题:

    问答题
    设A是n阶矩阵,且满足Am=E,其中m为整数,E为n阶单位矩阵。令将A中的元素aij换成它的代数余子式Aij而成的矩阵为A(~),证明:(A(~))m=E。

    正确答案:
    因为Am=E,所以,Am,=,A,m=1,,A,=1≠0,即矩阵A可逆。
    由题知A(~)=(A*)T,其中A*为A的伴随矩阵。所以有(A(~))m=[(A*)T]m=[(,A,A-1)T]m=[(A-1)T]m=[(Am)-1]T=E。
    解析: 暂无解析

  • 第12题:

    填空题
    设,B为三阶非零矩阵,且AB=0,则t=____。

    正确答案: -3
    解析:
    由B是三阶非零矩阵,且AB=0,知B的列向量是方程组AB=0的解且为非零解,故|A|=0,解得t=-3。

  • 第13题:

    设矩阵是4阶非零矩阵, 且满足证明矩阵B的秩


    答案:
    解析:

  • 第14题:

    设A1,A2分别为m阶,n阶可逆矩阵,分块矩阵.证明:A可逆,且


    答案:
    解析:

  • 第15题:

    设n阶矩阵A满足(aE-A)(bE-A)=O且a≠6.证明:A可对角化.


    答案:
    解析:
    【证明】由(aE-A)(bE-A)=O,得|aE-A|·|bE-A|=0,则|aE-A|=0或者
    |bE-A|=0.又由(aE-A)(bE-A)=O,得r(aE-A)+r(bE-A)≤n.
    同时r(aE-A)+r(bE-A)≥r[(aE-A)-(bE-A)]=r[(a-b)E]=n,
    所以r(aE-A)+r(bE-A)=n.
    (1)若|aE-A|≠0,则r(aE-A=n,所以r(bE-A)=0,故A=bE.
    (2)若|bE-A|≠0,则r(bE-A)=n,所以r(aE-A)=0,故A=aE.
    (3)若|aE-A|=0且|bE-A|=0,则a,b都是矩阵A的特征值.
    方程组(aE-A)X=0的基础解系含有n-r(aE-A)个线性无关的解向量,即特征值a对应的线性无关的特征向量个数为n-r(aE-A)个;
    方程组(bE-A)X=0的基础解系含有n-r(bE-A)个线性无关的解向量,即特征值b对应的线性无关的特征向量个数为n-r(bE-A)个.
    因为n-r(aE-A)+n-r(bE-A)=n,所以矩阵A有n个线性无关的特征向量,所以A一定可以对角化.

  • 第16题:

    设A是m×s阶矩阵,.B是s×n阶矩阵,且r(B)=r(AB).证明:方程组BX=0与ABX=0是同解方程组.


    答案:
    解析:

  • 第17题:

    设A为三阶矩阵,且|A|=4,则=_______.


    答案:
    解析:

  • 第18题:

    设A=图},B≠0为三阶矩阵,且BA=0,则r(B)=_______.{


    答案:1、1
    解析:
    BA=0r(A)+r(B)≤3,因为r(A)≥2,所以r(B)≤1,又因为B≠0,所以r(B)=1.

  • 第19题:

    设A,B为n阶矩阵,且r(A)+r(B)

    答案:
    解析:

  • 第20题:

    设A,B分别为m×n及n×s阶矩阵,且AB=O.证明:r(A)+r(B)≤n,


    答案:
    解析:

  • 第21题:

    设B≠O为三阶矩阵,且矩阵B的每个列向量为方程组的解,则k=_______,|B|=_______.


    答案:1、0
    解析:
    ,因为B的列向量为方程组的解且B≠0,所以AB=0且方程组有非零解,故|A|=0,解得k=1.因为AB=O,所以r(A)+r(B)≤3且r(A)≥1,于是r(B)≤2小于3,故|B|=0.

  • 第22题:

    设A为3阶矩阵.P为3阶可逆矩阵,且
    A.
    B.
    C.
    D.


    答案:B
    解析:
    故选B。

  • 第23题:

    填空题
    设A为n阶方阵,E为n阶单位矩阵,且A2=A,则(A-2E)-1=____。

    正确答案: -(A+E)/2
    解析:
    由题设A2=A有,A2-A-2E=(A-2E)(A+E)=-2E,即(A-2E)[-(A+E)/2]=E,所以有(A-2E)1=-(A+E)/2。