高中数学《函数》 一、考题回顾二、考题解析 【教学过程】 (一)导出课题问题2:实例一、实例二、实例三的对应关系在呈现方式上有什么不同? 问题3:以上三个实例有什么相同的特征? 接下来由学生分组讨论三个实例的共同特点:①都有两个非空数集A、B;②两个数集之间都有一种确定的对应关系;③对于数集A中的每一个x,按照某种对应关系f,在数集B中都有唯一确定的y值和它对应。然后归纳出函数的定义在全班交流。【答辩题目解析】 1.函数与映射的异同点? 2.本节课的教学目标是什么?

题目
高中数学《函数》
一、考题回顾



二、考题解析
【教学过程】
(一)导出课题



问题2:实例一、实例二、实例三的对应关系在呈现方式上有什么不同?
问题3:以上三个实例有什么相同的特征?
接下来由学生分组讨论三个实例的共同特点:①都有两个非空数集A、B;②两个数集之间都有一种确定的对应关系;③对于数集A中的每一个x,按照某种对应关系f,在数集B中都有唯一确定的y值和它对应。然后归纳出函数的定义在全班交流。



【答辩题目解析】
1.函数与映射的异同点?
2.本节课的教学目标是什么?


相似考题
更多“高中数学《函数》 ”相关问题
  • 第1题:

    高中数学《余弦定理的证明》
    一、考题回顾



    答案:
    解析:
    二、考题解析
    【教学过程】
    (一)导入新课
    情景导入:多媒体展示修路工人开凿山地隧道的情境图。提问:“为了测量山地隧道的长度,工人先在山顶选一个位置A,量出A点到隧道两端的距离AB、AC及AB与AC的夹角,最后算出隧道长度。哪位同学能说说这是一个什么数学问题?”
    预设:已知三角形两边及其夹角,去求另一边的数学问题。
    提问:“那工人们是如何算出来的呢?”
    引发认知冲入,从而引出课题。



    (四)小结作业
    小结:通过这节课的学习,你有什么收获?
    作业:课后题。
    【板书设计】



    【答辩题目解析】
    1.利用余弦定理可以解决哪几类解三角形的问题?
    【参考答案】
    (1)已知三边,求三个角。
    (2)已知两边和夹角,求第三边和其他两个角。
    2.如何备好一节课?
    【参考答案】
    一节好的数学课,要从以下几个方面准备:
    首先,备教材,教材分析是教师备好课、上好课的基本保证,对教师顺利完成教学任务、提升教学质量有十分重要的意义。分析教材的过程既是教学科学把握教学内容、加深对教育理论的重要前提,更是教师进行教学研究的一种主要方法。
    其次,备学生。教学的基本前提是为了学生而进行的教学,其根本目的在于促进学生的主动发展。因此在备课时要充分考虑所面对的学生特点。
    最后,备教学方法。现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、引导者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。

  • 第2题:

    高中数学《平面与平面的位置关系》
    一、考题回顾



    答案:
    解析:
    二、考题解析
    【教学过程】
    (一)导入新知
    回顾直线与直线、直线与平面的位置关系。提问:平面与平面的位置关系又是如何的呢?
    引出课题——平面与平面的位置关系。



    (三)课堂练习
    如果三个平面两两相交,那么它们的交线有多少条?画出图形表示你的结论。
    (四)小结作业
    提问:今天有什么收获?引导学生回顾平面与平面的位置关系。
    课后作业:练习题目。
    【板书设计】




    【答辩题目解析】
    1.本节课在教材中有着什么样的地位和作用?
    【参考答案】
    《平面与平面的位置关系》选自人教版高中数学必修二第二章第一节,本节课主要讲解的是平面与平面的相交和平行,在此之前,学生已经学习了《平面》,认识了平面,了解了一些相关的公理,本节课是对学生原有的平面知识的拓展,也为今后学习空间立体几何打下基础,有着承上启下的作用。
    2.在本节课的教学过程中,对于探究平面与平面的位置关系你是如何设计的?
    【参考答案】
    首先,设置了两个活动,一个是让学生将两本书看做两个平面,在移动和翻转的过程中观察它们的位置关系有几种,另一个是观察出示的长方体,思考围成长方体的六个面两两之间的位置关系有几种。通过这两个活动,让学生结合实例思考平面与平面的位置关系有几种,最后师生共同总结出平面与平面的位置关系,并说明如何用图形表示平面与平面的位置关系。接着,让学生自己尝试用图形表示。最后设置小组讨论,根据平面与平面的位置关系探究直线与直线的位置关系。整个教学过程,采用学生观察,师生总结,最后设置问题,将知识形成体系的方式来探究平面与平面的位置关系。

  • 第3题:

    高中数学《圆的标准方程》


    答案:
    解析:

  • 第4题:

    “函数图象”是高中数学中很重要的知识点,通过复习所学函数模型及其图象特征.可以使学生对函数有一个较直观的把握和较形象的理解,缓解因函数语言的抽象性引起的学生的心理不适应及不自觉的排斥情绪。
    (1)关于“函数图象及其应用”给出你的教学设计目标。(10分)
    (2)确定教学重点、难点。(10分)
    (3)设置两个教学环节(给出两个以上例题或练习题)并说明设计意图。(10分)


    答案:
    解析:
    (1)教学目标主要有:
    ①通过练习的设置,从解决简单实际问题的过程中,体会函数模型的广泛适用性,贯穿理论联系实际、学以致用的观点,充分体现数学的应用价值,加强看图识图能力,激发学习兴趣,自觉自主参与课堂教学活动。②结合具体的问题,并从特殊推广到一般,领会函数与方程之间的内在联系,体验函数与方程思想、数形结合思想及等价转化思想的意义和价值。③通过对所给问题的自主探究和合作交流,理解动与静,整体与局部的辨证统一关系,发展对变量数学的认识,体会函数知识的核心作用。
    (2)教学重点和难点
    ①教学重点:常见函数模型的图象特征和实际应用。通过课堂师生互动交流。共同完成对相关知识的系统归纳,借助多媒体课件演示,增加学生的直观体验,深化认识,突破重点。
    ②教学难点:利用函数图象研究方程问题的思想和方法。在教学过程中,自主探究学习,在实际问题的解决中学习将抽象的数学语言与直观的图象结合起来,充分利用这种结合,寻找解题思路,使问题化难为易、化繁为简,实现难点突破。
    (3)教学环节及设计意图

    课堂小结:
    本节课复习了常见函数模型及其图象特征,体会到利用函数图象解决函数性质的形象和直观。学习函数和方程的相互等价转化,体会函数方程思想与数形结合思想的意义和价值。
    正如华罗庚所说:数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休。

  • 第5题:

    下列关于高中数学基础性的说法不正确的是( )

    A.高中数学课程为学生进一步学习提高了必要的数学准备
    B.高中数学为不同学生提供相同的基础
    C.高中数学课程体现时代性、基础性和选择性
    D.高中数学课程要以学生的发展为本,尊重他们的个性发展

    答案:B
    解析:
    本题考查高中数学课程的性质

    选项A、C、D都体现了高中数学课程的定位,高中数学课程面向全体学生,为不同兴趣和志向、不同发展方向、进入不同高校不同专业学习的学生提供适合他们的数学基础,高中数学课程为不同学生提供不同的基础。

  • 第6题:

    高中数学课程为什么要加入“微积分初步”?


    答案:
    解析:
    ①微积分的思想是非常重要的思想,它可以帮助我们了解函数的变化,刻画现实世界中的规律,在日常生活中,微积分的基本知识已经成为人们认识某些事物的常识。很多中学生中学毕业之后会直接进入工作岗位,希望学生通过微积分的学习.能用变化和运动的观点来看待数学世界和现实世界,能有一个更加广阔的数学视野。②在中学阶段所学到的相关的学科,比如物理、化学、生物、地理等,都有很多反映微积分思想的实例和案例,所以在数学上给出微积分的表述,对于理解这些实例和案例是必要的。
    ③直接介绍微积分思想的难度不大,能为中学生所接受。
    ④可以帮助学生了解导数和积分的丰富背景和应用,建立一些具体的、特殊的极限概念,初步形成对极限的感性认识,这些对于进一步学习微积分理论是有帮助的。
    ⑤微积分的产生在人类文明史上有着重要的作用。通过这部分内容的学习可以让学生更好地理解数学在人类进步和发展中不可缺少的作用。

  • 第7题:

    高中数学课程中有哪几条主线?


    正确答案:高中数学课程中有六条主线:函数主线、运算主线、几何主线、算法主线、统计概率主线、应用主线。

  • 第8题:

    下列关于高中数学课程的变化内容,说法不正确的是()。

    • A、高中数学课程中的向量既是几何的研究对象,也是代数的研究对象
    • B、高中数学课程中,概率的学习重点是如何计数
    • C、算法是培养逻辑推理能力的非常好的载体
    • D、集合论是一个重要的数学分支

    正确答案:B

  • 第9题:

    如何把握高中数学课程的本质与适度的形式化?


    正确答案: 形式化是数学的特征之一,但是中学数学中的形式化受学生认知水平的限制。在高中数学课程中,适度形式化是必要的。例如,对于运算的学习,就要严格按照运算的定义,遵循运算律,过度形式化是不必要的。例如,对于几何、函数等内容,不需要过度形式化。对于几何,不必严格遵循几何的公理系统,而要关注几何直观。对于函数,也不必从集合、关系的角度去展开等。因此,高中数学课程应该返璞归真,努力揭示数学概念、法则、结论的发展背景、过程和本质,揭示人们探索真理的道路。

  • 第10题:

    单选题
    属于高中数学课程的函数内容是:()
    A

    指数函数

    B

    对数函数

    C

    多项式函数


    正确答案: B
    解析: 暂无解析

  • 第11题:

    单选题
    《普通高中数学课程标准(实验)》中规定的必修课程是每个学生都必须学习的数学内容,下列内容不属于必修4的是()。
    A

    算法初步

    B

    基本初等函数Ⅱ(三角函数)

    C

    平面上的向量

    D

    三角恒等变换


    正确答案: A
    解析: 基本初等函数Ⅱ(三角函数)、平面上的向量、三角恒等变换都属于必修4的内容,算法初步是选修3的内容之一,故选A。

  • 第12题:

    单选题
    下列关于高中数学课程的变化内容,说法不正确的是()。
    A

    高中数学课程中的向量既是几何的研究对象,也是代数的研究对象

    B

    高中数学课程中,概率的学习重点是如何计数

    C

    算法是培养逻辑推理能力的非常好的载体

    D

    集合论是一个重要的数学分支


    正确答案: B
    解析: 高中数学课程中的向量既是几何的研究对象,也是代数的研究对象,向量是沟通代数与几何的一座天然桥梁;算法是培养逻辑推理能力的非常好的载体,在大学和中学数学教育中都发挥着重要的作用:集合论是一个重要的数学分支,教师要准确把握高中数学课程中集合这一内容的定位;在概率课中,学习的重点是如何理解随机现象而不是如何计数。故选B。

  • 第13题:

    高中数学《奇函数的性质》
    一、考题回顾



    答案:
    解析:
    二、考题解析
    【教学过程】
    (一)导入新课
    回顾偶函数的定义及性质。
    教师引导:偶函数是轴对称性质在函数图象中的一种特殊体现。除了轴对称,我们还学过什么样的对称性呢?
    预设:还有中心对称。
    引题:今天我们就来学习中心对称性质在函数图象中的一种特殊体现。
    板书课题《奇函数的性质》。



    【参考答案】
    知识与技能:理解并掌握奇函数的定义及其性质,会灵活运用奇函数的性质解决问题。
    过程与方法:经历奇函数概念的形成过程,体会从特殊到一般的数学思想方法,提高分析问题、解决问题的能力。
    情感态度与价值观:积极参与学习过程,激发学习兴趣,提高学习信心,培养良好的数学学习习惯。

  • 第14题:

    高中数学《偶函数》

    一、考题回顾



    二、考题解析
    【教学过程】
    (一)导出课题
    同学们,“对称”是大自然的一种美,这种“对称美”在数学中也有大量的反映.让我们看看下列函数有什么共性?
    (二)形成概念



    1.初中函数与高中函数概念的区别?
    2.一个函数不是奇函数就是偶函数对吗?如果不对,请举例。


    答案:
    解析:
    1.
    高中函数概念与初中概念相比更具有一般性。实际上,高中的函数概念与初中的函数概念本质上是一致的。不同点在于,表述方式不同──高中明确了集合、对应的方法。初中虽然没有明确定义域、值域这些集合,但这是客观存在的,也已经渗透了集合与对应的观点。与初中相比,高中引入了抽象的符号f(x)。f(x)指集合B中与x对应的那个数。当x确定时,f(x)也唯一确定。另外,初中并没有明确函数值域这个概念。
    2.

  • 第15题:

    高中数学《曲线与方程》


    答案:
    解析:

  • 第16题:

    在集合、三角函数、导数及其应用、平面向量和空间向量五个内容中,属于高中数学必修课程内容的有()。


    A.1个

    B.2个

    C.3个

    D.4个

    答案:C
    解析:
    集合是属于必修1的内容,三角函数、平面向量是属于必修4的内容,导数及其应用是属于选修1-1或选修2-2的内容,空间向量是属于选修2-1的内容。所以属于高中数学必修课程的内容有3个。

  • 第17题:

    在集合、三角函数、导数及其应用、平面向量和空间向量五个内容中,属于高中数学必须的课程内容的有( )。


    A.1个
    B.2个
    C.3个
    D.4个

    答案:C
    解析:
    本题考查高中知识必修系列课程内容。

    集合、三角函数和平面向量是必修系列中的内容,是高中课程必须的课程内容,而导数及其应用和空间向量是选修的内容。因此是3方面。

  • 第18题:

    下列关于高中数学基础性的说法不正确的是()。

    • A、高中数学课程为学生进一步学习提供了必要的数学准备
    • B、高中数学课程为不同学生提供相同的基础
    • C、高中数学课程体现时代性、基础性和选择性
    • D、高中数学课程要以学生的发展为本,尊重他们的个性发展

    正确答案:B

  • 第19题:

    下列关于高中数学课程结构的说法不正确的是()。

    • A、高中数学课程可分为必修与选修两类
    • B、高中数学选修课程包括4个系列的课程
    • C、高中数学必修课程包括5个模块
    • D、高中课程的组合具有固定性,不能发生改变

    正确答案:D

  • 第20题:

    《普通高中数学课程标准(实验)》中规定的必修课程是每个学生都必须学习的数学内容,下列内容不属于必修4的是()。

    • A、算法初步
    • B、基本初等函数Ⅱ(三角函数)
    • C、平面上的向量
    • D、三角恒等变换

    正确答案:A

  • 第21题:

    在高中数学课程中为什么要讲微积分初步?


    正确答案:(1)微积分的思想是非常重要的思想,它可以帮助我们了解函数的变化,刻画现实世界中的规律。在日常生活中,微积分的基本知识已经成为人们认识某些事物的常识。很多中学生中学毕业之后会直接进入工作岗位,希望学生通过微积分的学习,能用变化和运动的观点来看待数学世界和现实世界,能有一个更加广阔的数学视野。
    (2)在中学阶段所学到的相关的学科,比如物理、化学、生物、地理等,都有很多反映微积分思想的实例和案例,所以在数学上给出微积分的表述,对于理解这些事例和案例是必要的。
    (3)直接介绍微积分的难度不大,能为中学生所接受。
    (4)可以帮助学生了解导数和积分的丰富背景和应用,建立一些具体的、特殊的极限概念,初步形成对极限的感性认识,这些对于进一步学习微积分理论是有帮助的。(5)微积分的产生在人类文明史上有着重要的作用。通过这部分内容的学习可以让学生更好地理解数学在人类进步和发展中不可缺少的作用。

  • 第22题:

    问答题
    如何理解高中数学课程的过程性目标?

    正确答案: 把"过程与方法"作为课程目标是本次课程改革最大的变化之一。在以前的《大纲》中,都在不同程度上强调了"过程与方法"的重要性,但是,这次课程改革把过程与方法作为课程目标。这样,"过程与方法"不再是可有可无的东西,而是必须实现的基本目标,我们必须认识到这种变化不仅力度大,而且有非常重要的意义。实际上,在长期的教学活动中,优秀的教师不仅关注学生对知识技能的掌握,而且关注掌握知识技能的过程,包括知识的来龙去脉,结论的背景、产生过程和意义,获取知识的能力和方法等等。在数学知识技能中,蕴涵着一些重要的数学思想和方法。学习的目的,不仅在于掌握数学知识技能和结果,更重要的是经历形成这些数学知识技能的过程,体会其中所蕴涵的数学思想和方法,学会运用这些思想和方法去学习其他的知识,并能从中感悟数学的作用和价值,提高学生学习数学的兴趣,树立学生学好数学的信心。因此,在教学活动中,不仅要关注学生对知识技能的掌握,而且要特别关注掌握知识技能的过程。
    解析: 暂无解析

  • 第23题:

    判断题
    在高中数学课程中,数形结合主要有三个载体:解析几何 、向量几何、函数。
    A

    B


    正确答案:
    解析: 暂无解析

  • 第24题:

    单选题
    下列关于高中数学课程结构的说法不正确的是()。
    A

    高中数学课程可分为必修与选修两类

    B

    高中数学选修课程包括4个系列的课程

    C

    高中数学必修课程包括5个模块

    D

    高中课程的组合具有固定性,不能发生改变


    正确答案: C
    解析: 高中数学课程可分为必修与选修两类,必修课程由五个模块组成,选修课程包括四个系列。高中课程的组合具有一定的灵活性,不同的组合可以相互转换。学生在做出选择之后,可以根据自己的意愿和条件向学校提出申请调整,经过测试获得相应的学分即可转换。