参考答案和解析
正确答案: -(n+1),-e-(n+1)
解析:
由f(x)=xex得fn(x)=(n+x)ex。令fn1(x)=(n+1+x)ex=0,得x0=-(n+1)。当x0>-(n+1)时,fn1(x)>0;当x0<-(n+1)时,fn1(x)<0。故fn(x)在x0=-(n+1)处取到极小值,此时,fn(x0)=-e-(n1
更多“填空题设f(x)=xex,则函数f(n)(x)在x=____处取最小值____。”相关问题
  • 第1题:

    设函数f(x)=x,则f’(1)=____________。


    正确答案:

     

  • 第2题:

    设两函数f(x)及g(x)都在x=a处取得极大值,则F(x)=f(x)g(x)在x=a处( )

    A.必取极大值
    B.必取极小值
    C.不可能取极值
    D.是否取得极值不能确定

    答案:D
    解析:

  • 第3题:

    设F(x)是连续函数f(x)的一个原函数,

    表示“M的充分必要条件是N”,则必有(  )。

    A.F(x)是偶函数f(x)是奇函数
    B.F(x)是奇函数f(x)是偶函数
    C.F(x)是周期函数f(x)是周期函数
    D.F(x)是单调函数f(x)是单调函数

    答案:A
    解析:

  • 第4题:

    设两函数f(x)及g(x)都在x=a处取得极大值,则函数F(x)=f(x)g(x)在x=a处( )。

    A.必取极大值
    B.必取极小值
    C.不可能取极值
    D.是否取极值不能确定

    答案:D
    解析:

  • 第5题:

    求函数.f(x)=x2?2x在x=0处的n阶导数,f(n)(O)。


    答案:
    解析:
    函数乘积求高阶导数,莱布尼茨公式。

  • 第6题:

    设函数f(x)=xex,则fn(1)=()。

    • A、(n-1)e
    • B、ne
    • C、(n+1)e
    • D、n+1

    正确答案:C

  • 第7题:

    单选题
    设f(x)=xex,则函数f(n)(x)在x=(  )处取最小值(  )。
    A

    n+1;en1

    B

    -(n+1);en1

    C

    -(n+1);-e-(n1

    D

    n+1;-e-(n1


    正确答案: D
    解析:
    由f(x)=xex得fn(x)=(n+x)ex。令fn1(x)=(n+1+x)ex=0,得x0=-(n+1)。当x0>-(n+1)时,fn1(x)>0;当x0<-(n+1)时,fn1(x)<0。故fn(x)在x0=-(n+1)处取到极小值,此时,fn(x0)=-e-(n1

  • 第8题:

    单选题
    设f(x)的一个原函数为xex,则∫xf′(x)dx=(  )。
    A

    x2ex/2

    B

    x2ex+C

    C

    2xex+C

    D

    x2ex/2+C


    正确答案: B
    解析:
    采用分部积分法,∫xf′(x)dx=∫xd[f(x)]=xf(x)-∫f(x)dx,又由题意可知,f(x)=(xex)′,则∫xf′(x)dx=x(xex)′-xex+C=x2ex+C。

  • 第9题:

    填空题
    设f(x)的一个原函数为xex,则∫xf′(x)dx=____。

    正确答案: x2ex+C
    解析:
    采用分部积分法,∫xf′(x)dx=∫xd[f(x)]=xf(x)-∫f(x)dx,又由题意可知,f(x)=(xex)′,则∫xf′(x)dx=x(xex)′-xex+C=x2ex+C。

  • 第10题:

    单选题
    设f(x)的一个原函数为xex,则∫xf′(x)dx=(  )。
    A

    xex+C

    B

    x2ex+C

    C

    -xex+C

    D

    -x2ex+C


    正确答案: C
    解析:
    采用分部积分法,∫xf′(x)dx=∫xd[f(x)]=xf(x)-∫f(x)dx,又由题意可知,f(x)=(xex)′,则∫xf′(x)dx=x(xex)′-xex+C=x2ex+C。

  • 第11题:

    填空题
    设f(x)=xex,则函数f(n)(x)在x=____处取最小值____。

    正确答案: -(n+1),-e-(n+1)
    解析:
    由f(x)=xex得fn(x)=(n+x)ex。令fn1(x)=(n+1+x)ex=0,得x0=-(n+1)。当x0>-(n+1)时,fn1(x)>0;当x0<-(n+1)时,fn1(x)<0。故fn(x)在x0=-(n+1)处取到极小值,此时,fn(x0)=-e-(n1

  • 第12题:

    填空题
    f(x)是奇函数且在x=0处有定义,则f(0)=____.

    正确答案: 0
    解析:
    ∵f(x)是奇函数,∴f(-0)=-f(0),即f(0)=-f(0),∴f(0)=0.

  • 第13题:

    设函数f(x)在点x=a处可导,则函数|f(x)|在点x=a处不可导的充分条件是( )

    A.f(a)=0且f′(a)=0
    B.f(a)=0且f′(a)≠0
    C.f(a)>0且f′(a)>
    D.f(a)<0且f′(a)<

    答案:B
    解析:

  • 第14题:

    设F(x)是连续函数f(x)的一个原函数,表示“M的充分必要条件是N”,则必有

    AF(x)是偶函数f(x)是奇函数
    BF(x)是奇函数f(x)是偶函数
    CF(x)是周期函数f(x)是周期函数
    DF(x)是单调函数f(x)是单调函数


    答案:A
    解析:

  • 第15题:

    设f(x)是定义在[-a,a]上的任意函数,则下列答案中哪个函数不是偶函数?

    A.f(x)+f(-x)
    B.f(x)*f(-x)
    C.[f(x)]2
    D.f(x2)

    答案:C
    解析:
    提示:利用函数的奇偶性定义来判定。选项A、B、D均满足定义F(-x)=F(x),所以为偶函数,而C不满足,设F(x)= [f(x)]2,F(-x)= [f(-x)]2,因为f(x)是定义在 [-a,a]上的任意函数,f(x)可以是奇函数,也可以是偶函数,也可以是非奇非偶函数,从而推不出F(-x)=F(x)或 F(-x) = -F(x)。

  • 第16题:

    设f(x)是R上的函数,则下列叙述正确的是( )。

    A、f(x)f(-x)是奇函数
    B、f(x)|f(x)|是奇函数
    C、f(x)-f(-x)是偶函数
    D、f(x)+f(-x)是偶函数

    答案:D
    解析:
    的奇偶性取决于厂(x)的奇偶性是奇函数

  • 第17题:

    设g(x)在(-∞,+∞)严格单调递减,且f(x)在x=x0处有极大值,则必有( )。
    A. g[f(x)]在x= x0处有极大值 B.g[f(x)]在x=x0处有极小值C.g[f(x)]在x=x0处有最小值 D. g[f(x)]在x=x0处既无极值也无最小值


    答案:B
    解析:
    提示:由于f(x)在x= x0处有极大值,所以f(x)在x= x0左侧附近单调递增,右侧附近单调递减,g(f(x))在x= x0左侧附近单调递减,右侧附近单调递增。

  • 第18题:

    设g(x)在(-∞,+∞)严格单调递减,且f(x)在x=x0处有极大值,则必有()。

    • A、g[f(x)]在x=x0处有极大值
    • B、g[f(x)]在x=x0处有极小值
    • C、g[f(x)]在x=x0处有最小值
    • D、g[f(x)]在x=x0既无极值也无最小值

    正确答案:B

  • 第19题:

    填空题
    设函数f(x)在x=2的某邻域内可导,且f′(x)=ef(x),f(2)=1,则f‴(2)=____。

    正确答案: 2e3
    解析:
    因f′(x)=efx方程两边对x求导,得f″(x)=efx·f′(x)=efx·efx=e2fx,两边再对x求导,得f‴(x)=e2fx·2f′(x)=2e2fx·efx=2e3fx。又f(2)=1,则f‴(2)=2e3f2=2e3

  • 第20题:

    单选题
    设F(x)是连续函数f(x)的一个原函数,“M⇔N”表示“M的充分必要条件是N”,则必有(  )。
    A

    F(x)是偶函数⇔f(x)是奇函数

    B

    F(x)是奇函数⇔f(x)是偶函数

    C

    F(x)是周期函数⇔f(x)是周期函数

    D

    F(x)是单调函数⇔f(x)是单调函数


    正确答案: D
    解析:
    采用举例的方法进行排除,令f(x)=x,在(-∞,+∞)内单调增加,但是F(x)=x2/2+C在(-∞,+∞)内不单调,D项错误;
    令f(x)=x2为偶函数,但是F(x)=x3/3+C,其中C≠0时不是奇函数,故B项错误;
    令f(x)=1+cosx是以2π为周期的函数,但是F(x)=x+sinx+C不是周期函数,故C项错误。

  • 第21题:

    填空题
    设f(x)是可导函数,且f′(x)=sin2[sin(x+1)],f(0)=4,f(x)的反函数是x=φ(y),则φ′(4)=____。

    正确答案: 1/sin2(sin1)
    解析:
    φ′(4)=1/f′(0)=1/sin2(sin1)。

  • 第22题:

    单选题
    设两函数f(x)及g(x)都在x=a处取得极大值,则F(x)=f(x)g(x)在x=a处(  )
    A

    必取极大值

    B

    必取极小值

    C

    不可能取极值

    D

    是否取得极值不能确定


    正确答案: D
    解析:
    本题采用举例法进行排除较为简单。
    令f(x)=g(x)=-|x|,f(x)与g(x)都在x=0处取得极大值,但是f(x)g(x)=x2在x=0处取到极小值,故A、C项错误;
    令f(x)=1-x2,g(x)=-x2,则f(x)与g(x)都在x=0处取得极大值,分别是1和0,f(x)g(x)=x4-x2在x=0处取得极大值0,故B项错误。

  • 第23题:

    单选题
    设X~N(2,22),其概率密度函数为f(x),分布函数F(x),则(  )。
    A

    P{X≤0}=P{X≥0}=0.5

    B

    f(-x)=1-f(x)

    C

    F(x)=-F(-x)

    D

    P{X≥2}=P{X<2}=0.5


    正确答案: B
    解析:
    该正态分布的密度函数的图像关于x=μ=2对称,故P{X≥2}=P{X<2}=0.5,故应选D。

  • 第24题:

    单选题
    设f(x)=xex,则函数f(n)(x)在x=(  )处取最小值。
    A

    -(n+1)

    B

    -n+1

    C

    -n-1

    D

    -n


    正确答案: B
    解析:
    由f(x)=xex得fn(x)=(n+x)ex。令fn1(x)=(n+1+x)ex=0,得x0=-(n+1)。当x0>-(n+1)时,fn1(x)>0;当x0<-(n+1)时,fn1(x)<0。故fn(x)在x0=-(n+1)处取到极小值,此时,fn(x0)=-e-(n1