更多“2、如果一个5×4矩阵A的秩为3,则它的列向量组的秩为4.”相关问题
  • 第1题:

    设矩阵,已知矩阵A相似于B,则秩(A-2E)与秩(A-E)之和等于

    A.2
    B.3
    C.4
    D.5

    答案:C
    解析:

  • 第2题:

    下列结论中正确的是(  )。

    A、 矩阵A的行秩与列秩可以不等
    B、 秩为r的矩阵中,所有r阶子式均不为零
    C、 若n阶方阵A的秩小于n,则该矩阵A的行列式必等于零
    D、 秩为r的矩阵中,不存在等于零的r-1阶子式

    答案:C
    解析:
    A项,矩阵A的行秩与列秩一定相等。B项,由矩阵秩的定义可知,若矩阵A(m×n)中至少有一个r阶子式不等于零,且r<min(m,n)时,A中所有的r+1阶子式全为零,则A的秩为r。即秩为r的矩阵中,至少有一个r阶子式不等于零,不必满足所有r阶子式均不为零。C项,矩阵A的行列式不等于零意味着矩阵A不满秩,n阶矩阵的秩为n时,所对应的行列式的值大于零;当n阶矩阵的秩<n时,所对应的行列式的值等于零。D项,秩为r的矩阵中,有可能存在等于零的r-1阶子式,如秩为2的矩阵



    中存在等于0的1阶子式。

  • 第3题:

    设向量组,,若此向量组的秩为2,求的值。


    答案:
    解析:

  • 第4题:

    设矩阵,α1,α2,α3为线性无关的3维列向量组,则向量组Aα1,Aα2,Aα3的秩为_________.


    答案:1、2.
    解析:
    因(Aα1,Aα2,Aα3)=A(α1,α2,α3),又α,α,α是三维线性无关列向量,所以(α1,α2,α3)为三阶可逆矩阵故r(Aα1,Aα2,Aα3)=r(A)=2.

  • 第5题:

    设α为三维单位列向量,E为三阶单位矩阵,则矩阵E-αα^T的秩为________.


    答案:
    解析:

  • 第6题:

    设A为3阶实对称矩阵,A的秩为2,且. (Ⅰ)求A的特征值与特征向量; (Ⅱ)求矩阵A


    答案:
    解析:

  • 第7题:

    设A是5×6矩阵,则( )正确。
    A.若A中所有5阶子式均为0,则秩R(A)=4
    B.若秩R(A)=4,则A中5阶子式均为0
    C.若秩R(A)=4,则A中4阶子式均不为0
    D.若A中存在不为0的4阶子式,则秩R(A)=4


    答案:B
    解析:
    提示:利用矩阵秩的定义。

  • 第8题:

    设有向量组α1=(2,1,4,3)T,α1=(-1,1,-6,6)T,α3=(-1,-2,2,-9)T,α4=(1,1,-2,7)T,α5=(2,4,4,9)T,则向量组α1,α2,α3,α4,α5的秩是()。

    • A、1
    • B、2
    • C、3
    • D、4

    正确答案:C

  • 第9题:

    单选题
    设向量组Ⅰ:α(→)1,α(→)2,…,α(→)m,其秩为r;向量组Ⅱ:α(→)1,α(→)2,…, α(→)m,β(→),其秩为s,则r=s是向量组Ⅰ与向量组Ⅱ等价的(  )。
    A

    充分非必要条件

    B

    必要非充分条件

    C

    充分必要条件

    D

    既非充分也非必要条件


    正确答案: A
    解析:
    两向量组等价的充要条件是它们有相同的秩。

  • 第10题:

    问答题
    设向量组α1,α2,…,α5的秩为r>0,证明:(1)α1,α2,…,α5中任意r个线性无关的向量都构成它的一个极大线性无关组;(2)若α1,α2,…,α5中每个向量都可由其中某r个向量线性表示,则这r个向量必为α1,α2,…,α5的一个极大线性无关组。

    正确答案:
    (1)设①:αj1j2,…,αjr是α12,…,αs中任意r个线性无关的向量,由于向量组的秩为r,故向量组中任意多余r个向量的向量组必线性相关,所以
    αj1j2,…,αjri(i=1,2,…,s;i≠j1,j2,…,jr)
    线性相关,从而①为原向量组的极大线性无关组.
    (2)设①:αj1j2,…,αjr是α12,…,αs中的r个向量,且原向量组中每个向量都可由①线性表示,则原向量组与向量组①等价.等价向量组有相同的秩,原向量组的秩为r,所以向量组①的秩为r.又向量组①只含r个向量,故向量组①线性无关,因此①是原向量组的极大线性无关组.
    解析: 暂无解析

  • 第11题:

    单选题
    设向量组(I)α1,α2,…,αs,其秩为r1,向量组(Ⅱ)β1,β2,…,βs,其秩为r2,且βi(i=1,2,…,s)均可以由α1,…,αs线性表示,则(  ).
    A

    向量组α11,α22,…,αss的秩为r1+r2

    B

    向量组α11,α22,…,αss秩为rl-r2

    C

    向量组α1,α2,…,αs,β1,β2,…,βs的秩为rl+r2

    D

    向量组α1,α2,…,αs,β1,β2,…,βs的秩为rl


    正确答案: A
    解析:
    向量组β1,β2,…,βs可由向量组α1,α2,…,αs线性表示,则向量组α1,α2,…,αs,β1,β2,…,βs也可由其线性表示,所以α1,α2,…,αs向量组的极大线性无关组也是该向量组的极大线性无关组,故其秩为rl

  • 第12题:

    单选题
    设α(→)1,α(→)2,…,α(→)s和β(→)1,β(→)2,…,β(→)t为两个n维向量组,且秩(α(→)1,α(→)2,…,α(→)s)=秩(β(→)1,β(→)2,…,β(→)t)=r,则(  )。
    A

    此两个向量组等价

    B

    秩(α()1α()2,…,α()sβ()1β()2,…,β()t)=r

    C

    α()1α()2,…,α()s可以由β()1β()2,…,β()t线性表示时,此二向量组等价

    D

    s=t时,二向量组等价


    正确答案: C
    解析:
    两向量组等价的充要条件是所含向量的个数相等,且能相互线性表示。

  • 第13题:

    向量组的秩等于( )。

    A、1
    B、2
    C、3
    D、4

    答案:B
    解析:
    向量组对应的矩阵为,对A进行初等行变换 可见R(A)=2,从而向量组的秩为2

  • 第14题:

    设矩阵,则A^3的秩为________


    答案:
    解析:

  • 第15题:

    设A为m×n矩阵,B为n×m矩阵,E为m阶单位矩阵,若AB=E,则



    A.A秩r(A)=m,秩r(B)=m
    B.秩r(A)=m,秩r(B)=n
    C.秩r(A)=n,秩r(B)=m
    D.秩r(A)=n,秩r(B)=n

    答案:A
    解析:
    本题考的是矩阵秩的概念和公式.因为AB=E是m阶单位矩阵,知r(AB)=m.又因r(AB)≤min(r(A),r(B)),故m≤r(A),m≤r(B). ①另一方面,A是m×n矩阵,B是n×m矩阵,又有r(A)≤m,r(B)≤m. ②比较①、②得r(A)=m,r(B)=m.所以选(A)

  • 第16题:

    设α,β为三维列向量,矩阵A=αα^T+ββ^T,其中α^T,β^T分别是α,β的转置.证明:
      (Ⅰ)秩r(A)≤2;
      (Ⅱ)若α,β线性相关,则秩r(A)<2.


    答案:
    解析:
    【证明】(Ⅰ)因为α,β为三维列向量,那么αα^T和ββ^T都是三阶矩阵,
    且秩r(αα^T)≤1,r(ββ^T)≤1.
    那么,r(A)=r(αα^T+ββ^T)≤r(αα^T)+r(ββ^T)≤2.
    (Ⅱ)由于α,β线性相关,不妨设α=kβ,于是
    r(A)=r(αα^T+ββ^T)=r((1+k^2)ββ^T)≤r(β)≤1<2.
    【评注】本题考查矩阵秩的性质公式.
    (Ⅰ)中有两个基本知识点:①r(αα^T)≤1和②r(A+B)≤r(A)+r(B).
    (Ⅱ)中有两个基本知识点:①α,β线性相关的几何意义和②r(kA)=r(A),k≠0.
    注意,如果分块矩阵比较熟悉,本题的(Ⅰ)也可如下处理:
    因为

    那么
    从而r(A)≤2.

  • 第17题:

    设A为三阶实对称矩阵,A的秩为2,且

      (Ⅰ)求A的所有特征值与特征向量;
      (Ⅱ)求矩阵A.


    答案:
    解析:

  • 第18题:

    4阶方阵A的秩为2,则其伴随矩阵An的秩为( )。

    A. 0 B. 1 C. 2 D. 3


    答案:A
    解析:
    提示:A所有三阶子式为零,故An是零矩阵。

  • 第19题:

    设A、B分别为n×m,n×l矩阵,C为以A、B为子块的n×(m+l)矩阵,即C=(A,B),则( ).《》( )

    A.秩(C)=秩(A)
    B.秩(C)=秩(B)
    C.秩(C)与秩(A)或秩(C)与秩(B)不一定相等
    D.若秩(A)=秩(B)=r,则秩(C)=r

    答案:C
    解析:

  • 第20题:

    单选题
    设A为4×5矩阵,且A的行向量组线性无关,则(  )。
    A

    A的列向量组线性无关

    B

    方程组AX()b()有无穷多解

    C

    方程组AX()b()的增广矩阵A(_)的任意四个列向量构成的向量组线性无关

    D

    A的任意4个列向量构成的向量组线性无关


    正确答案: B
    解析:
    方程组AX()b()的行向量组线性无关,则r(A)=4,而未知数的个数为5,故方程组中含有一个自由未知数,它有无穷多解。

  • 第21题:

    单选题
    设向量组I:α(→)1,α(→)2,…,α(→)m,其秩为r;向量组II:α(→)1,α(→)2,…,α(→)m,β(→),其秩为s,则r=s是向量组I与向量组II等价的(  )。
    A

    充分非必要条件

    B

    必要非充分条件

    C

    充分必要条件

    D

    既非充分也非必要条件


    正确答案: C
    解析:
    两向量组等价的充要条件是它们有相同的秩。

  • 第22题:

    问答题
    设向量组α(→)1,α(→)2,…,α(→)s的秩为r>0,证明:  (1)α(→)1,α(→)2,…,α(→)s中任意r个线性无关的向量都构成它的一个极大线性无关组;  (2)若α(→)1,α(→)2,…,α(→)s中每个向量都可由其中某r个向量线性表示,则这r个向量必为α(→)1,α(→)2,…,α(→)s的一个极大线性无关组。

    正确答案:
    (1)设①:α()j1,α()j2,…,α()jrα()1,α()2,…,α()s中任意r个线性无关的向量,由于向量组的秩为r,故向量组中任意多于r个向量的向量组必线性相关,所以α()j1,α()j2,…,α()jr,α()i(i=1,2,…,s;i≠j1,j2,…,jr)线性相关,从而①为原向量组的极大线性无关组。
    (2)设①:α()j1,α()j2,…,α()jrα()1,α()2,…,α()s中的r个向量,且原向量组中每个向量都可由①线性表示,则原向量组与向量组①等价。等价向量组有相同的秩,原向量组的秩为r,所以向量组①的秩为r。又向量组①只含r个向量,故向量组①线性无关,因此由(1)的结论有①是原向量组的极大线性无关组。
    解析: 暂无解析

  • 第23题:

    单选题
    n元线性方程组AX(→)=b(→)有唯一解的充要条件为(  )。
    A

    A为方阵且|A|≠0

    B

    导出组AX()0()仅有零解

    C

    秩(A)=n

    D

    系数矩阵A的列向量组线性无关,且常数向量b()与A的列向量组线性相关


    正确答案: C
    解析:
    A项,系数矩阵A不一定是方阵;B项,导出组只有零解,方程组AX()b()不一定有解;C项,当r(A)=n时,不一定有r(A)=r(A(_))=n;D项,b()可由A的列向量组线性表示,则方程组AX()b()有唯一解。

  • 第24题:

    单选题
    下列结论中正确的是(    )
    A

    矩阵A的行秩与列秩可以不等

    B

    秩为r的矩阵中,所有r阶子式均不为零

    C

    若n阶方阵A的秩小于n,则该矩阵A的行列式必等于零

    D

    秩为r的矩阵中,不存在等于零的r-1阶子式


    正确答案: D
    解析: