参考答案和解析
答案:C
解析:
更多“设A为m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r1,矩阵B=AC的秩为r,则 ”相关问题
  • 第1题:

    设A是m×n矩阵,B是n×m矩阵,且AB=E,其中E为m阶单位矩阵,则( )


    A.r(A)=r(B)=m
    B.r(A)=m r(B)=n
    C.r(A)=n r(B)=m
    D.r(A)=r(B)=n

    答案:A
    解析:

  • 第2题:

    设A为m阶实对称矩阵且正定,B为m×n实矩阵,B^T为B的转置矩阵,试证:B^TAB为正定矩阵的充分必要条件是B的秩r(B)=n,


    答案:
    解析:

  • 第3题:

    设A为n阶正定矩阵,证明:对任意的可逆矩阵P,P^TAP为正定矩阵.


    答案:
    解析:

  • 第4题:

    设A为m阶正定矩阵,B为m×n阶实矩阵.证明:B^SAB正定的充分必要条件是r(B)=n,


    答案:
    解析:

  • 第5题:

    设A,B为n阶矩阵,记r(X)为矩阵X的秩,(XY)表示分块矩阵,则



    A.Ar(A AB)=r(A)
    B.r(A BA)=r(A)
    C.r(A B)=max{r(A),r(B)}
    D.r(A B)=r(A^T B^T).

    答案:A
    解析:

  • 第6题:

    设a为N阶可逆矩阵,则( ).《》( )


    答案:C
    解析:

  • 第7题:

    设A为m×n矩阵,B为n×m矩阵,E为m阶单位矩阵,若AB=E,则( ).《》( )

    A.r(A)=m,r(B)=m
    B.r(A)=m,r(B)=n
    C.r(A)=n,r(B)=m
    D.r(A)=n,r(B)=n

    答案:A
    解析:
    设A为m×n矩阵,B为n×s矩阵,因此r(A)≤m,r(B)≤m.由AB=E有r(AB)=r(E)=m,由r(AB)≤min{r(A),r(B)},知r(A)≥m,r(B)≥m,因此r(A)=m,r(B)=m.

  • 第8题:

    n阶实对称矩阵A为正定矩阵,则下列不成立的是()。

    • A、所有k级子式为正(k=1,2,…,n)
    • B、A的所有特征值非负
    • C、秩(A)=n

    正确答案:A

  • 第9题:

    单选题
    n阶实对称矩阵A为正定矩阵,则下列不成立的是()。
    A

    所有k级子式为正(k=1,2,…,n)

    B

    A的所有特征值非负

    C

    秩(A)=n


    正确答案: A
    解析: 暂无解析

  • 第10题:

    填空题
    设n阶矩阵A的各行元素之和均为零,且A的秩为n-1,则线性方程组AX=O的通解为____.

    正确答案: X=k(1,1…,1)T
    解析:
    由r(A)=n-1,知方程组AX=0的基础解系只含有n-(n-1)=1个解向量.又矩阵A的各行元素之和为0,知(1,1,…,1)T,为AX=0的非零解,则方程组AX=0的通解为X=k(1,1…,1)T

  • 第11题:

    单选题
    设A是m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r,矩阵B=AC的秩为r1,则(  )。
    A

    r>r1

    B

    r<rl

    C

    r=rl

    D

    r与r1的关系依C而定


    正确答案: A
    解析:
    由r1=r(B)≤min[r(A),r(C)]=r(A)=r。
    且A=BC1,故r=r(BC1)≤min[r(B),r(C1)]=r(B)=r1,所以有r=r1

  • 第12题:

    单选题
    下列结论中正确的是(    )
    A

    矩阵A的行秩与列秩可以不等

    B

    秩为r的矩阵中,所有r阶子式均不为零

    C

    若n阶方阵A的秩小于n,则该矩阵A的行列式必等于零

    D

    秩为r的矩阵中,不存在等于零的r-1阶子式


    正确答案: D
    解析:

  • 第13题:

    下列结论中正确的是(  )。

    A、 矩阵A的行秩与列秩可以不等
    B、 秩为r的矩阵中,所有r阶子式均不为零
    C、 若n阶方阵A的秩小于n,则该矩阵A的行列式必等于零
    D、 秩为r的矩阵中,不存在等于零的r-1阶子式

    答案:C
    解析:
    A项,矩阵A的行秩与列秩一定相等。B项,由矩阵秩的定义可知,若矩阵A(m×n)中至少有一个r阶子式不等于零,且r<min(m,n)时,A中所有的r+1阶子式全为零,则A的秩为r。即秩为r的矩阵中,至少有一个r阶子式不等于零,不必满足所有r阶子式均不为零。C项,矩阵A的行列式不等于零意味着矩阵A不满秩,n阶矩阵的秩为n时,所对应的行列式的值大于零;当n阶矩阵的秩<n时,所对应的行列式的值等于零。D项,秩为r的矩阵中,有可能存在等于零的r-1阶子式,如秩为2的矩阵



    中存在等于0的1阶子式。

  • 第14题:

    设n阶实对称矩阵A的秩为r,且满足,求 ①二次型的标准形; ②行列式的值,其中E为单位矩阵


    答案:
    解析:

  • 第15题:

    设A为n阶非奇异矩阵,α为n维列向量,b为常数.记分块矩阵.其中A*是矩阵A的伴随矩阵,E是n阶单位矩阵. (1)计算并化简PQ; (2)证明:矩阵Q可逆的充分必要条件是.


    答案:
    解析:

  • 第16题:

    设A为m×n矩阵,B为n×m矩阵,E为m阶单位矩阵,若AB=E,则



    A.A秩r(A)=m,秩r(B)=m
    B.秩r(A)=m,秩r(B)=n
    C.秩r(A)=n,秩r(B)=m
    D.秩r(A)=n,秩r(B)=n

    答案:A
    解析:
    本题考的是矩阵秩的概念和公式.因为AB=E是m阶单位矩阵,知r(AB)=m.又因r(AB)≤min(r(A),r(B)),故m≤r(A),m≤r(B). ①另一方面,A是m×n矩阵,B是n×m矩阵,又有r(A)≤m,r(B)≤m. ②比较①、②得r(A)=m,r(B)=m.所以选(A)

  • 第17题:

    设α为三维单位列向量,E为三阶单位矩阵,则矩阵E-αα^T的秩为________.


    答案:
    解析:

  • 第18题:

    设A为n阶可逆矩阵,则(-A)的伴随矩阵(-A)n等于( )。
    A. -An B. An C. (-1)nAn D. (-1)n-1An


    答案:D
    解析:
    提示:(-A)的代数余子式是由A的代数余子式乘以(-1)n-1。

  • 第19题:

    设A、B分别为n×m,n×l矩阵,C为以A、B为子块的n×(m+l)矩阵,即C=(A,B),则( ).《》( )

    A.秩(C)=秩(A)
    B.秩(C)=秩(B)
    C.秩(C)与秩(A)或秩(C)与秩(B)不一定相等
    D.若秩(A)=秩(B)=r,则秩(C)=r

    答案:C
    解析:

  • 第20题:

    设A为n阶可逆矩阵,则(-A)的伴随矩阵(-A)*等于()。

    • A、-A*
    • B、A*
    • C、(-1)nA*
    • D、(-1)n-1A*

    正确答案:D

  • 第21题:

    单选题
    设A为m×n矩阵,B为n×m矩阵,E为m阶单位矩阵,若AB=E,则(  )。
    A

    r(A)=m,r(B)=m

    B

    r(A)=m,r(B)=n

    C

    r(A)=n,r(B)=m

    D

    r(A)=n,r(B)=n


    正确答案: C
    解析:
    设A为m×n矩阵,B为n×m矩阵,因此r(A)≤m,r(B)≤m。
    由AB=E有r(AB)=r(E)=m,由r(AB)≤min{r(A),r(B)},知r(A)≥m,r(B)≥m,因此r(A)=m,r(B)=m。

  • 第22题:

    单选题
    设A是m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r,矩阵B=AC的秩为r1,则(  )。
    A

    r>r1

    B

    r<r1

    C

    r=r1

    D

    r与r1的关系依C而定


    正确答案: A
    解析:
    由r1=r(B)≤min[r(A),r(C)]=r(A)=r。
    且A=BC1,故r=r(BC1)≤min[r(B),r(C1)]=r(B)=r1,所以有r=r1

  • 第23题:

    填空题
    当n阶矩阵A的秩r(A)<n时,|A|=____。

    正确答案: 0
    解析:
    由r(A)<n,知矩阵A不可逆,故|A|=0。