设z=z(x,y)是由方程x2+y2+z2=ez所确定的隐函数,求dz.

题目
设z=z(x,y)是由方程x2+y2+z2=ez所确定的隐函数,求dz.


相似考题
更多“设z=z(x,y)是由方程x2+y2+z2=ez所确定的隐函数,求dz.”相关问题
  • 第1题:

    已知(X,Y)服从均匀分布,联合概率密度函数为

    设Z=max{X,Y}求Z的概率密度函数fz(z)


    答案:X与Y都服从(0, 1)上的均匀分布,则fx与fy在(0, 1)上恒等于1。
    Z = z <==> {X = z && Y <= z} + {Y = z && X < z}
    因此,fz(z)dz = fx(z)dz * Integrate[fy(z)dy, (0, z)] + fy(z)dz * Integrate[fx(z)dx, (0, z)]
    fz(z)dz = zdz + zdz = 2zdz
    故fz(z) = 2z,z属于(0, 1).


  • 第2题:


    A.只能确定一个具有连续偏导数的隐函数z=z(x,y)
    B.可确定两个具有连续偏导数的隐函数y=y(x,y)和z=z(x,y)
    C.可确定两个具有连续偏导数的隐函数x=x(x,y)和z=z(x,y)
    D.可确定两个具有连续偏导数的隐函数x=x(y,z)和y=y(x,z)

    答案:D
    解析:

  • 第3题:

    求由方程2x2+y2+z2+2xy-2x-2y-4z+4=0确定的隐函数的全微分.


    答案:
    解析:

  • 第4题:

    设z=sin(xy)+2x2+y,求dz.


    答案:
    解析:
    解法1



  • 第5题:

    设随机变量(X,Y)的联合密度函数为f(x,y)=(1)求P(X>2Y);(2)设Z=X+Y,求Z的概率密度函数.


    答案:
    解析:

  • 第6题:

    若函数z=z(x,y)由方程确定,则=_________.


    答案:1、-dx.
    解析:

  • 第7题:

    问答题
    求由方程x2+y2+z2-xz-yz-2x-2y+2z-6=0确定的函数z=z(x,y)的极值。

    正确答案:
    先求出函数z的各个偏导:
    由原方程可得,原方程两边对x求导得
    2x+2z·zx′-z-(x+y)zx′-2+2zx′=0①
    原方程两边对y求导得
    2y+2z·zy′-z-(x+y)zy′-2+2zy′=0②
    ①②中,令zx′=0,zy′=0,解得x=(z+2)/2,y=(z+2)/2,将其代入已知方程得Z=±4,故驻点为(3,3)和(-1,-1)。
    ①式两边对x,y分别求导得
    2+2(zx′)2+2zzxx″-2zx′+(2-x-y)zxx″=0③
    2zy′zx′+2zzxy″-zy′-zx′+(2-x-y)zxy″=0④
    ②式两边对y求导得
    2+2(zy′)2+2zzyy″-2zy′+(2-x-y)zyy″=0⑤
    当x=y=-1,z=-4时,zx′=zy′=0,将其代入③④⑤,得A=zxx″(-1,-1)=1/2,B=zxy″(-1,-1)=0,C=zyy″(-1,-1)=1/2,B2-AC=-1/4<0,A=1/2>0。
    则函数z在(-1,-1)处取得极小值z=-4。
    当x=y=3,z=4时,zx′=zy′=0,并将其代入③④⑤,得A=zxx″(3,3)=-1/2,B=zxy″(3,3)=0,C=zyy″(3,3)=-1/2,B2-AC=-1/4<0,A=-1/2<0。
    故z在(3,3)点处取到极大值z=4。
    解析: 暂无解析

  • 第8题:

    单选题
    设函数z=z(x,y)由方程z=e2x-3z+2y确定,则3∂z/∂x+(∂z/∂y)=(  )。
    A

    2

    B

    1

    C

    e

    D

    0


    正确答案: A
    解析:
    构造函数F(x,y,z)=z-e2x3z-2y。则∂z/∂x=-Fx′/Fz′=2e2x3z/(1+3e2x3z),∂z/∂y=-Fy′/Fz′=2/(1+3e2x3z),故3∂z/∂x+(∂z/∂y)=2。

  • 第9题:

    单选题
    设方程x2+y2+z2=4z确定可微函数z=z(x,y),则全微分dz等于(  )。[2014年真题]
    A

    (ydx+xdy)/(2-z)

    B

    (xdx+ydy)/(2-z)

    C

    (dx+dy)/(2+z)

    D

    (dx-dy)/(2-z)


    正确答案: C
    解析:
    对等式两边分别同时求导,得:2xdx+2ydy+2zdz=4dz。所以dz=(xdx+ydy)/(2-z)

  • 第10题:

    单选题
    设z=z(x,y)是由方程xz-xy+ln(xyz)=0所确定的可微函数,则∂z/∂y等于(  )。[2013年真题]
    A

    -xz/(xz+1)

    B

    -x+1/2

    C

    z(-xz+y)/[x(xz+1)]

    D

    z(xy-1)/[y(xz+1)]


    正确答案: B
    解析:
    将xz-xy+ln(xyz)=0两边对y求偏导,得xzy′-x+x(z+y·zy′)/(xyz)=0,整理得zy′=z(xy-1)/[y(xz+1)]。

  • 第11题:

    填空题
    设函数z=z(x,y)由方程F(x-az,y-bz)=0所给出,其中F(u,v)任意可微,则a∂z/∂x+(b∂z/∂y)=____。

    正确答案: 1
    解析:
    根据偏导数的求解方法可知∂z/∂x=-Fx′/Fz′=-F1′/(―aF1′―bF2′),∂z/∂y=-Fy′/Fz′=-F2′/(―aF1′―bF2′),故a∂z/∂x+(b∂z/∂y)=-(aF1′+bF2′)/(―aF1′―bF2′)=1。

  • 第12题:

    填空题
    设f(x,y,z)=exyz2,其中z=z(x,y)是由x+y+z+xyz=0确定的隐函数,则fx′(0,1,-1)=____。

    正确答案: 1
    解析:
    构造函数F(x,y,z)=x+y+z+xyz,则有∂z/∂x=-Fx′/Fz′=-(1+yz)/(1+xy),(∂z/∂x)|01,-1=0,又由f(x,y,z)=exyz2 ,得fx′=exyz2+exy·2z·zx′,代入(0,1,-1),得fx′(0,1,-1)=e0×1×(-1)2+e0×1×2×(-1)×0=1。

  • 第13题:

    设Ω是由:x2+y2+z2≤2z及z≤x2+y2所确定的立体区域,则Ω的体积等于:


    答案:D
    解析:
    提示:本题Ω是由球面里面部分和旋转拋物面外部围成的,立体在xOy平面上投影区域:x2 +y2≤1,利用柱面坐标写出三重积分。

  • 第14题:

    设有三元方程 ,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程

    A.只能确定一个具有连续偏导数的隐函数z=z(x,y)
    B.可确定两个具有连续偏导数的隐函数x=x(y,z)和z=z(x,y)
    C.可确定两个具有连续偏导数的隐函数y=y(x,z)和z=z(x,y)
    D.可确定两个具有连续偏导数的隐函数x=x(y,z)和y=y(x,z)

    答案:D
    解析:

  • 第15题:

    求由方程2x2+y2+z2+2xy-2x-2y-4x+4=0确定的隐函数的全微分.


    答案:
    解析:
    所以dz=

  • 第16题:

    设z=z(x,y)是由 确定的函数,求 的极值点和极值


    答案:
    解析:

  • 第17题:

    设函数z=z(x,y)由方程确定,其中F为可微函数,且F'2≠0,则=

    A.Ax
    B.z
    C.-x
    D.-z

    答案:B
    解析:

  • 第18题:

    设Z=Z(x,Y)是由方程x+y3+z+e2=1确定的函数,求dz


    答案:
    解析:
    利用隐函数求偏导数公式,记

  • 第19题:

    单选题
    设f(x,y,z)=exyz2,其中z=z(x,y)是由x+y+z+xyz=0确定的隐函数,则fx′(0,1,-1)=(  )。
    A

    e

    B

    2e

    C

    0

    D

    1


    正确答案: B
    解析:
    构造函数F(x,y,z)=x+y+z+xyz,则有∂z/∂x=-Fx′/Fz′=-(1+yz)/(1+xy),(∂z/∂x)|01,-1=0,又由f(x,y,z)=exyz2,得fx′=exyz2+exy·2z·zx′,
    代入(0,1,-1),得fx′(0,1,-1)=e0×1×(-1)2+e0×1×2×(-1)×0=1。

  • 第20题:

    填空题
    设函数z=z(x,y)由方程z=e2x-3z+2y确定,则3∂z/∂x+∂z/∂y=____。

    正确答案: 2
    解析:
    方程两边同时对x求偏导,则∂z/∂x=e2x3z(2-3∂z/∂x),可得∂z/∂x=2e2x3z/(1+3e2x3z)。同理∂z/∂y=e2x3z(-3∂z/∂y)+2,可得∂z/∂y=2/(1+3e2x3z),所以3∂z/∂x+∂z/∂y=6e2x3z/(1+3e2x3z)+2/(1+3e2x3z)=2(1+3e2x3z)/(1+3e2x3z)=2。

  • 第21题:

    单选题
    设函数z=z(x,y)由方程F(x-az,y-bz)=0所给出,其中F(u,v)任意可微,则a∂z/∂x+(b∂z/∂y)=(  )。
    A

    1

    B

    2

    C

    3

    D

    4


    正确答案: A
    解析:
    根据偏导数的求解方法可知∂z/∂x=-Fx′/Fz′=-F1′/(―aF1′―bF2′),∂z/∂y=-Fy′/Fz′=-F2′/(―aF1′―bF2′),故a∂z/∂x+(b∂z/∂y)=-(aF1′+bF2′)/(―aF1′―bF2′)=1。

  • 第22题:

    单选题
    设函数z=z(x,y)由方程z=e2x-3z+2y确定,则3∂z/∂x+(∂z/∂y)=(  )。
    A

    0

    B

    1

    C

    2

    D

    4


    正确答案: B
    解析:
    构造函数F(x,y,z)=z-e2x3z-2y。则∂z/∂x=-Fx′/Fz′=2e2x3z/(1+3e2x3z),∂z/∂y=-Fy′/Fz′=2/(1+3e2x3z),故3∂z/∂x+(∂z/∂y)=2。

  • 第23题:

    单选题
    设三元函数xy-zlny+exz=1,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程(  )。
    A

    只能确定一个具有连续偏导数的隐函数z=z(x,y)

    B

    可确定两个具有连续偏导数的隐函数y=y(x,z)和z=z(x,y)

    C

    可确定两个具有连续偏导数的隐函数x=x(y,z)和z=z(x,y)

    D

    可确定两个具有连续偏导数的隐函数x=x(y,z)和y=y(x,z)


    正确答案: C
    解析:
    构造函数F(x,y,z)=xy-zlny+exz-1,则Fx′=y+zexz,Fy′=x-(z/y),Fz′=-lny+xexz。Fx′(0,1,1)=2≠0,Fy′(0,1,1)=-1≠0,Fz′(0,1,1)=0。
    故根据隐函数的存在定理可知,方程xy-zlny+exz=1能确定x是y、z的具有连续偏导数的函数x=x(y,z);y是x、z的具有连续偏导数的函数y=y(x,z)。因为Fz′(0,1,1)=0不能满足定理成立的条件,故不能确定z是x、y的具有连续偏导数的隐函数z=z(x,y)。