设A、B都是n阶可逆矩阵,且(AB)2=I,则(BA)2的值为( )。

题目
设A、B都是n阶可逆矩阵,且(AB)2=I,则(BA)2的值为( )。



相似考题
更多“设A、B都是n阶可逆矩阵,且(AB)2=I,则(BA)2的值为( )。 ”相关问题
  • 第1题:


    A、B都是n阶可逆矩阵,则

    答案:D
    解析:

  • 第2题:

    设A为m×n阶矩阵,B为n×m阶矩阵,且m>n,令r(AB)=r,则().

    A.r>m
    B.r=m
    C.rD.r≥m

    答案:C
    解析:
    显然AB为m阶矩阵,r(A)≤n,r(B)≤n,而r(AB)≤min{r(A),r(B)}≤n小于m,所以选(C).

  • 第3题:

    设A为n阶矩阵,A^2=A,则下列结论成立的是().

    A.A=O
    B.A=E
    C.若A不可逆,则A=O
    D.若A可逆,则A=E

    答案:D
    解析:
    因为A^2=A,所以A(E-A)=O,由矩阵秩的性质得,r(A)+r(E—A)=n,若A可逆,则r(A)=n,所以r(E-A)=0,A=E,选(D).

  • 第4题:

    设A是4×3阶矩阵且r(A)=2,B=,则r(AB)=_______.


    答案:1、2
    解析:
    因为|B|=10≠0,所以r(AB)=r(A)=2.

  • 第5题:

    设A,B为n阶矩阵.
      (1)是否有AB~BA;(2)若A有特征值1,2,…,n,证明:AB~BA.


    答案:
    解析:

  • 第6题:

    设A,B都是N阶对称矩阵,证明AB是对称矩阵的充分必要条件是.AB=BA


    答案:
    解析:

  • 第7题:

    设A,B都是n阶矩阵,AB+E可逆.证明BA+E也可逆,并且.


    答案:
    解析:

  • 第8题:

    设A和B都是n阶矩阵.记,. (1)求HG和GH. (2)证明|E-AB|=|E-BA|.


    答案:
    解析:

  • 第9题:

    都是n(n≥3)阶非零矩阵,且AB=O,则r(B)=( )

    A. 0
    B.1
    C. 2
    D. 3

    答案:B
    解析:

  • 第10题:

    设A是3阶矩阵,P = (α1,α2,α3)是3阶可逆矩阵,且,若矩阵Q=(α2,α1,α3),则Q-1AQ=( )。


    答案:B
    解析:
    提示:由条件知,λ1=1,λ2=2,λ3=0是矩阵A的特征值,而α1,α2,α3是对应的特征向量,故有

  • 第11题:

    填空题
    设A为n阶方阵,E为n阶单位矩阵,且A2=A,则(A-2E)-1=____。

    正确答案: -(A+E)/2
    解析:
    由题设A2=A有,A2-A-2E=(A-2E)(A+E)=-2E,即(A-2E)[-(A+E)/2]=E,所以有(A-2E)1=-(A+E)/2。

  • 第12题:

    单选题
    设A为n阶可逆矩阵,则(-A)的伴随矩阵(-A)*等于()。
    A

    -A*

    B

    A*

    C

    (-1)nA*

    D

    (-1)n-1A*


    正确答案: B
    解析: 暂无解析

  • 第13题:

    设n阶矩阵A与对角矩阵相似,则().

    A.A的n个特征值都是单值
    B.A是可逆矩阵
    C.A存在n个线性无关的特征向量
    D.A一定为n阶实对称矩阵

    答案:C
    解析:
    矩阵A与对角阵相似的充分必要条件是其有n个线性无关的特征向量,A有n个单特征值只是其可对角化的充分而非必要条件,同样A是实对称阵也是其可对角化的充分而非必要条件,A可逆既非其可对角化的充分条件,也非其可对角化的必要条件,选(C).

  • 第14题:

    设A,B都是,n阶矩阵,其中B是非零矩阵,且AB=O,则().

    A.r(B)=n
    B.r(B)C.A2-Bz=(A+B)(A-B)
    D.|A|=0

    答案:D
    解析:
    因为AB=O,所以r(A)+r(B)≤n,又因为B是非零矩阵,所以r(B)≥1,从而r(A)小于n,于是|A|=0,选(D).

  • 第15题:

    已知n阶可逆矩阵A的特征值为λ0,则矩阵(2A)-1的特征值是:


    答案:C
    解析:

  • 第16题:

    设A与B都是n阶方阵,且,证明AB与BA相似.


    答案:
    解析:

  • 第17题:

    设A1,A2分别为m阶,n阶可逆矩阵,分块矩阵.证明:A可逆,且


    答案:
    解析:

  • 第18题:

    设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B.
      (1)证明B可逆;
      (2)求AB^-1.


    答案:
    解析:

  • 第19题:

    证明下列命题:(1) 若A,B是同阶可逆矩阵,则(AB)*=B*A*.(2) 若A可逆,则A*可逆且.(3) 若AA′=E,则.


    答案:
    解析:

  • 第20题:

    设A,B为三阶矩阵且A不可逆,又AB+2B=O 且r(B)=2,则 |A+4E|=

    A.8
    B.16
    C.2
    D.0

    答案:B
    解析:

  • 第21题:

    设a为N阶可逆矩阵,则( ).《》( )


    答案:C
    解析:

  • 第22题:

    单选题
    A、B都是n阶矩阵,且A≠0,AB=0,则|B|=(  )。
    A

    0

    B

    1

    C

    2

    D

    3


    正确答案: D
    解析:
    由AB=0,知矩阵B的列向量是方程组AX()0()的解,则r(A)+r(B)≤n;又A≠0,故r(A)≠0,知r(B)<n,所以|B|=0。

  • 第23题:

    单选题
    设A为n阶可逆方阵,则()不成立。
    A

    AT可逆

    B

    A2可逆

    C

    -2A可逆

    D

    A+E可逆


    正确答案: D
    解析: 暂无解析