更多“设z=z(x,y)是由 确定的函数,求 的极值点和极值”相关问题
  • 第1题:

    求函数z=x2+2y2+4x-8y+2的极值.


    答案:
    解析:

    所以z(-2,2)=-10为极小值.

  • 第2题:

    求y=f(x)=2x3-3x2-12x+14的极值点和极值,以及函数曲线的凸凹性区间和拐点.


    答案:
    解析:
    y'=6x2-6x-12,y''=12x-6,令y'=0得驻点x1=-1,x2=2,当x2=2时,y''=18>0.所以f(z)在x=2处取极小值-6.当x1=-1时,y''<0.所以f(x)在x=-1处取极大值21.

  • 第3题:

    求函数z=x2-xy+y2+9x一6y+20的极值.


    答案:
    解析:

    联立解出驻点为(-4,1),


    且点(-4,1)处


    故在点(-4,1)处函数z取得极小值-1.

  • 第4题:

    对于函数z=xy,原点(0,0)()

    A.不是函数的驻点
    B.是驻点不是极值点
    C.是驻点也是极值点
    D.无法判定是否为极值点

    答案:B
    解析:
    【考情点拨】本题考查了函数的驻点、极值点的知识点.

  • 第5题:

    设随机变量(X,Y)的联合密度函数为f(x,y)=(1)求P(X>2Y);(2)设Z=X+Y,求Z的概率密度函数.


    答案:
    解析:

  • 第6题:

    设函数y=f(x)由方程y^3+xy^2+x^2y+6=0确定,求f(x)的极值.


    答案:
    解析:

  • 第7题:

    设Z=Z(x,Y)是由方程x+y3+z+e2=1确定的函数,求dz


    答案:
    解析:
    利用隐函数求偏导数公式,记

  • 第8题:

    设z=x3-3x+y2,则它在点(1,0)处( )《》( )

    A.取得极大值
    B.不取得极值
    C.取得极小值
    D.不能确定是否取得极值

    答案:C
    解析:

  • 第9题:

    问答题
    求由方程x2+y2+z2-xz-yz-2x-2y+2z-6=0确定的函数z=z(x,y)的极值。

    正确答案:
    先求出函数z的各个偏导:
    由原方程可得,原方程两边对x求导得
    2x+2z·zx′-z-(x+y)zx′-2+2zx′=0①
    原方程两边对y求导得
    2y+2z·zy′-z-(x+y)zy′-2+2zy′=0②
    ①②中,令zx′=0,zy′=0,解得x=(z+2)/2,y=(z+2)/2,将其代入已知方程得Z=±4,故驻点为(3,3)和(-1,-1)。
    ①式两边对x,y分别求导得
    2+2(zx′)2+2zzxx″-2zx′+(2-x-y)zxx″=0③
    2zy′zx′+2zzxy″-zy′-zx′+(2-x-y)zxy″=0④
    ②式两边对y求导得
    2+2(zy′)2+2zzyy″-2zy′+(2-x-y)zyy″=0⑤
    当x=y=-1,z=-4时,zx′=zy′=0,将其代入③④⑤,得A=zxx″(-1,-1)=1/2,B=zxy″(-1,-1)=0,C=zyy″(-1,-1)=1/2,B2-AC=-1/4<0,A=1/2>0。
    则函数z在(-1,-1)处取得极小值z=-4。
    当x=y=3,z=4时,zx′=zy′=0,并将其代入③④⑤,得A=zxx″(3,3)=-1/2,B=zxy″(3,3)=0,C=zyy″(3,3)=-1/2,B2-AC=-1/4<0,A=-1/2<0。
    故z在(3,3)点处取到极大值z=4。
    解析: 暂无解析

  • 第10题:

    填空题
    设函数z=z(x,y)由方程z=e2x-3z+2y确定,则3∂z/∂x+∂z/∂y=____。

    正确答案: 2
    解析:
    方程两边同时对x求偏导,则∂z/∂x=e2x3z(2-3∂z/∂x),可得∂z/∂x=2e2x3z/(1+3e2x3z)。同理∂z/∂y=e2x3z(-3∂z/∂y)+2,可得∂z/∂y=2/(1+3e2x3z),所以3∂z/∂x+∂z/∂y=6e2x3z/(1+3e2x3z)+2/(1+3e2x3z)=2(1+3e2x3z)/(1+3e2x3z)=2。

  • 第11题:

    单选题
    设三元函数xy-zlny+exz=1,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程(  )。
    A

    只能确定一个具有连续偏导数的隐函数z=z(x,y)

    B

    可确定两个具有连续偏导数的隐函数y=y(x,z)和z=z(x,y)

    C

    可确定两个具有连续偏导数的隐函数x=x(y,z)和z=z(x,y)

    D

    可确定两个具有连续偏导数的隐函数x=x(y,z)和y=y(x,z)


    正确答案: C
    解析:
    构造函数F(x,y,z)=xy-zlny+exz-1,则Fx′=y+zexz,Fy′=x-(z/y),Fz′=-lny+xexz。Fx′(0,1,1)=2≠0,Fy′(0,1,1)=-1≠0,Fz′(0,1,1)=0。
    故根据隐函数的存在定理可知,方程xy-zlny+exz=1能确定x是y、z的具有连续偏导数的函数x=x(y,z);y是x、z的具有连续偏导数的函数y=y(x,z)。因为Fz′(0,1,1)=0不能满足定理成立的条件,故不能确定z是x、y的具有连续偏导数的隐函数z=z(x,y)。

  • 第12题:

    填空题
    设f(x,y,z)=exyz2,其中z=z(x,y)是由x+y+z+xyz=0确定的隐函数,则fx′(0,1,-1)=____。

    正确答案: 1
    解析:
    构造函数F(x,y,z)=x+y+z+xyz,则有∂z/∂x=-Fx′/Fz′=-(1+yz)/(1+xy),(∂z/∂x)|01,-1=0,又由f(x,y,z)=exyz2 ,得fx′=exyz2+exy·2z·zx′,代入(0,1,-1),得fx′(0,1,-1)=e0×1×(-1)2+e0×1×2×(-1)×0=1。

  • 第13题:

    设函数f(x,y)=X2+Y2+xy+3,求f(x,y)的极值点与极值.


    答案:
    解析:

  • 第14题:

    求函数z=x2+y2+2y的极值.


    答案:
    解析:

  • 第15题:

    设z=z(x,y)是由方程x2+y2+z2=ez所确定的隐函数,求dz.


    答案:
    解析:

  • 第16题:

    求函数(x,y)=4(x-y)-x2-y2的极值.


    答案:
    解析:

    所以(2,-2)=8为极大值.

  • 第17题:

    已知函数y(x)由方程x^3+y^3-3x+3y-2=0确定,求y(x)的极值.


    答案:
    解析:

  • 第18题:

    设函数z=f(xy,yg(x)),其中函数f具有二阶连续偏导数,函数g(x)可导且在x=1处取得极值g(1)=1.求


    答案:
    解析:

    所以,令x=y=1,且注意到g(1)=1,g'(1)=0,得

  • 第19题:

    设二元函数z=xy,则点Po(0,0)()

    A.为z的驻点,但不为极值点
    B.为z的驻点,且为极大值点
    C.为z的驻点,且为极小值点
    D.不为z的驻点,也不为极值点

    答案:A
    解析:
    可知Po点为Z的驻点.当x、y同号时,z=xy>0;当x、y异号时,z=xy<0.在点Po(0,0)处,z|Po=0.因此可知Po不为z的极值点.因此选A.

  • 第20题:

    下列各点中为二元函数z=x3-y3-3x2+3y-9x的极值点的是()。

    • A、(3,-1)
    • B、(3,1)
    • C、(1,1)
    • D、(-1,-1)

    正确答案:A

  • 第21题:

    单选题
    设函数z=z(x,y)由方程z=e2x-3z+2y确定,则3∂z/∂x+(∂z/∂y)=(  )。
    A

    2

    B

    1

    C

    e

    D

    0


    正确答案: A
    解析:
    构造函数F(x,y,z)=z-e2x3z-2y。则∂z/∂x=-Fx′/Fz′=2e2x3z/(1+3e2x3z),∂z/∂y=-Fy′/Fz′=2/(1+3e2x3z),故3∂z/∂x+(∂z/∂y)=2。

  • 第22题:

    单选题
    设函数z=z(x,y)由方程z=e2x-3z+2y确定,则3∂z/∂x+(∂z/∂y)=(  )。
    A

    0

    B

    1

    C

    2

    D

    4


    正确答案: B
    解析:
    构造函数F(x,y,z)=z-e2x3z-2y。则∂z/∂x=-Fx′/Fz′=2e2x3z/(1+3e2x3z),∂z/∂y=-Fy′/Fz′=2/(1+3e2x3z),故3∂z/∂x+(∂z/∂y)=2。

  • 第23题:

    单选题
    设函数z=f(x,y)的全微分为dz=xdx+ydy,则点(0,0)(  )。
    A

    不是f(x,y)的连续点

    B

    不是f(x,y)的极值点

    C

    是f(x,y)的极大值点

    D

    是f(x,y)的极小值点


    正确答案: D
    解析:
    函数的全微分为dz=xdx+ydy,则∂z/∂x=x,∂z/∂y=y,故∂2z/∂x2|00=1=A,∂2z/∂x∂y|00=0=B,∂2z/∂y2|00=1=C,又∂z/∂x|00=0,∂z/∂y|00=0,则B2-AC=-1<0,A>0。故(0,0)是函数f(x,y)的极小值点。