参考答案和解析
答案:
解析:
更多“设A与B都是n阶正交矩阵,证明AB也是正交矩阵.”相关问题
  • 第1题:


    A、B都是n阶可逆矩阵,则

    答案:D
    解析:

  • 第2题:

    设A为m×n阶矩阵,B为n×m阶矩阵,且m>n,令r(AB)=r,则().

    A.r>m
    B.r=m
    C.rD.r≥m

    答案:C
    解析:
    显然AB为m阶矩阵,r(A)≤n,r(B)≤n,而r(AB)≤min{r(A),r(B)}≤n小于m,所以选(C).

  • 第3题:

    设A为n阶实对称矩阵,下列结论不正确的是().

    A.矩阵A与单位矩阵E合同
    B.矩阵A的特征值都是实数
    C.存在可逆矩阵P,使P^-1AP为对角阵
    D.存在正交阵Q,使Q^TAQ为对角阵

    答案:A
    解析:
    根据实对称矩阵的性质,显然(B)、(C)、(D)都是正确的,但实对称矩阵不一定是正定矩阵,所以A不一定与单位矩阵合同,选(A).

  • 第4题:

    设A,B为n阶矩阵.
      (1)是否有AB~BA;(2)若A有特征值1,2,…,n,证明:AB~BA.


    答案:
    解析:

  • 第5题:

    设A是nxm矩阵,B是mxn矩阵,E是n阶单位阵,若AB=E,证明B的列向量组线性无关。


    答案:
    解析:

  • 第6题:

    设A,B都是N阶对称矩阵,证明AB是对称矩阵的充分必要条件是.AB=BA


    答案:
    解析:

  • 第7题:

    设A为n阶正定矩阵,证明:对任意的可逆矩阵P,P^TAP为正定矩阵.


    答案:
    解析:

  • 第8题:

    设A,B为n阶正定矩阵.证明:A+B为正定矩阵.


    答案:
    解析:

  • 第9题:

    设A,B分别为m×n及n×s阶矩阵,且AB=O.证明:r(A)+r(B)≤n,


    答案:
    解析:

  • 第10题:

    若A,B是正交矩阵,则下列说法错误的是()。

    • A、AB为正交矩阵
    • B、A+B为正交矩阵
    • C、ATB为正交矩阵
    • D、AB-1为正交矩阵

    正确答案:B

  • 第11题:

    单选题
    设A,B都是n阶矩阵,若有可逆矩阵P使得P-1AP=B,则称矩阵A与矩阵B()。
    A

    等价

    B

    相似

    C

    合同

    D

    正交


    正确答案: B
    解析: 由相似矩阵的定义知B正确。故选B。

  • 第12题:

    问答题
    设n阶矩阵A有n个两两正交的特征向量,证明A是对称矩阵。

    正确答案:
    设A的n个两两正交的特征向量为α()1,α()2,…,α()n,其对应的特征值依次为λ12,…,λn
    ξ()i=α()i/,α()i,(i=1,2,…,n),则ξ()1,ξ()2,…,ξ()n是两两正交的单位向量。
    记P=(ξ()1,ξ()2,…,ξ()n),即P是正交矩阵。从而有P-1=PT,P-1AP=diag(λ12,…,λn)=Λ,即A=PΛP-1=PΛPT,故AT=(PΛPT)T=(PT)TΛTPT=PΛPT=A,即A是对称矩阵。
    解析: 暂无解析

  • 第13题:

    设n阶矩阵A与对角矩阵相似,则().

    A.A的n个特征值都是单值
    B.A是可逆矩阵
    C.A存在n个线性无关的特征向量
    D.A一定为n阶实对称矩阵

    答案:C
    解析:
    矩阵A与对角阵相似的充分必要条件是其有n个线性无关的特征向量,A有n个单特征值只是其可对角化的充分而非必要条件,同样A是实对称阵也是其可对角化的充分而非必要条件,A可逆既非其可对角化的充分条件,也非其可对角化的必要条件,选(C).

  • 第14题:

    设N阶矩阵A与对角矩阵合同,则A是().

    A.可逆矩阵
    B.实对称矩阵
    C.正定矩阵
    D.正交矩阵

    答案:B
    解析:

  • 第15题:

    设A、B都是n阶可逆矩阵,且(AB)2=I,则(BA)2的值为( )。



    答案:A
    解析:
    已知(AB)2=I,即ABAB=I,说明矩阵A可逆,且A-1=BAB,用A右乘上式两端即可得解

  • 第16题:

    设A1,A2分别为m阶,n阶可逆矩阵,分块矩阵.证明:A可逆,且


    答案:
    解析:

  • 第17题:

    设3阶实对称矩阵A的各行元素之和都为3,向量都是齐次线性方程组AX=0的解.① 求A的特征值和特征向量.② 求作正交矩阵Q和对角矩阵


    答案:
    解析:

  • 第18题:

    设A是m×s阶矩阵,.B是s×n阶矩阵,且r(B)=r(AB).证明:方程组BX=0与ABX=0是同解方程组.


    答案:
    解析:

  • 第19题:

    设A,B都是n阶矩阵,AB+E可逆.证明BA+E也可逆,并且.


    答案:
    解析:

  • 第20题:

    设A和B都是n阶矩阵.记,. (1)求HG和GH. (2)证明|E-AB|=|E-BA|.


    答案:
    解析:

  • 第21题:

    若A,口是正交矩阵,则下列说法错误的是( )。

    A、AB为正交矩阵
    B、A+B为正交矩阵
    C、A-1B为正交矩阵
    D、AB-1为正交矩阵

    答案:B
    解析:

  • 第22题:

    设A,B都是n阶矩阵,若有可逆矩阵P使得P-1AP=B,则称矩阵A与矩阵B()。

    • A、等价
    • B、相似
    • C、合同
    • D、正交

    正确答案:B

  • 第23题:

    单选题
    若A,B是正交矩阵,则下列说法错误的是()。
    A

    AB为正交矩阵

    B

    A+B为正交矩阵

    C

    ATB为正交矩阵

    D

    AB-1为正交矩阵


    正确答案: A
    解析: 由正交矩阵的定义可知,若A,B正交,则有ATA=I(I为单位阵),BTB=I,则(AB)T(AB)=BTATAB=I,则选项A正确,同理可证明选项C、D也是正交矩阵。而选项B,(A+B)T(A+B)=(AT+BT)(A+B)=2I+BTA+ATB,显然不正确,故选B。