参考答案和解析
答案:D
解析:
提示:利用点法式,求切平面方程。曲面方程写成隐函数形式x2+y2-z=0在(-1,2,5)点处,法线的方向向量为
更多“曲面z=x2+y2在(-1,2,5)处的切平面方程是: ”相关问题
  • 第1题:

    曲面:x2+y2+z2=2z之内及曲面z=x2+y2之外所围成的立体的体积V等于:


    答案:D
    解析:

  • 第2题:

    求曲面 的平行于平面 的切平面方程


    答案:
    解析:

  • 第3题:

    曲面x^2+cos(xy)+yz+x=0在点(0,1,-1)处的切平面方程为

    A.Ax-y+z=-2
    B.x+y+z=0
    C.x-2y+z=-3
    D.x-y-z=0

    答案:A
    解析:

  • 第4题:

    曲面z=x(1-siny)+y^2(1-sinx)在点(1,0,1)处的切平面方程为________.


    答案:1、2x-y-z=1.
    解析:

  • 第5题:

    已知曲面方程为x-yZ+z2-2x+8y+6z=10,则过点(5,-2.1)的切平面方程为( )。

    A、2x+3y+2z=0
    B、2x+y+2z=lO
    C、x-2y+6z=15
    D、x-2y+6z=0

    答案:B
    解析:

  • 第6题:

    方程x2+2y2-z2=0表示的曲面是()

    A.椭球面
    B.锥面
    C.柱面
    D.平面

    答案:B
    解析:
    对照二次曲面的标准方程可知,所给曲面为锥面,因此选B.

  • 第7题:

    在yOz平面上的直线z=y绕z轴旋转一周之后得到的曲线方程为( )。

    A.z2=x2+y2
    B.x2=y2+z2
    C.x2+y2-z2=1
    D.x2+y2-z2=-1

    答案:A
    解析:
    直线绕z轴旋转所得为对顶圆锥,中心在原点。绕z轴旋转yOz平面上的直线z=y,将直

  • 第8题:

    已知曲面z=4-x2-y2上点P处的切平面平行于平面2x+2y+z-1=0,则点P的坐标是().

    • A、(1,-1,2)
    • B、(1,1,2)
    • C、(-1,1,2)
    • D、(-1,-1,2)

    正确答案:B

  • 第9题:

    单选题
    曲面z-ez+2xy=3在点(1,2,0)处的切平面方程为(  )。
    A

    3(x-1)+2(y-2)=0

    B

    4(x-1)+2(y-2)=0

    C

    3(x-1)+(y-2)=0

    D

    4(x-1)+(y-2)=0


    正确答案: C
    解析:
    构造函数F(x,y,z)=z-ez+2xy-3,则Fx′=2y,Fy′=2x,Fz′=1-ez。故将点(1,2,0)代入上式,即可得此点处切平面的法线向量为n()=(4,2,0),则切平面方程为4(x-1)+2(y-2)=0。

  • 第10题:

    单选题
    曲面z=x2+y2在(-1,2,5)处的切平面方程是:()
    A

    2x+4y+z=11

    B

    -2x-4y+z=-1

    C

    2x-4y-z=-15

    D

    2x-4y+z=-5


    正确答案: A
    解析: 暂无解析

  • 第11题:

    填空题
    曲面z-ez+2xy=3在点(1,2,0)处的切平面方程为____。

    正确答案: 4(x-1)+2(y-2)=0
    解析:
    构造函数F(x,y,z)=z-ez+2xy-3,则Fx′=2y,Fy′=2x,Fz′=1-ez。故将点(1,2,0)代入上式,即可得此点处切平面的法线向量为n()=(4,2,0),则切平面方程为4(x-1)+2(y-2)=0。

  • 第12题:

    单选题
    曲面z=x2+y2与平面2x+4y-z=0平行的切平面的方程是(  )。
    A

    2x+4y-z-5=0

    B

    2x+4y-z=0

    C

    2x+4y-z-3=0

    D

    2x+4y-z+5=0


    正确答案: B
    解析:
    设曲面上有点P0(x0,y0,z0),使得曲面在此点的切平面与平面2x+4y-z=0平行,由曲面方程z=x2+y2得,曲面在P0处的法向量为(-2x0,-2y0,1),它应该与已知平面2x+4y-z=0的法向量n()=(2,4,-1)平行,即-2x0/2=-2y0/4=1/(-1),解得x0=1,y0=2,z0=x02+y02=5,故所求切平面方程为2(x-1)+4(y-2)-(z-5)=0,即2x+4y-z-5=0。

  • 第13题:

    是由曲面z=x2+y2,y=x,y=0,z=1在第一


    答案:C
    解析:
    提示:确定在xOy平面上投影区域的图形,写出在直角坐标系下先z后x最后y的三次积分。

  • 第14题:

    曲面 与平面 平行的切平面的方程是


    答案:
    解析:

  • 第15题:

    设直线L过A(1,0,0),B(0,1,1)两点,将L绕z轴旋转一周得到曲面∑,∑与平面z=0,z=2所围成的立体为Ω.
      (Ⅰ)求曲面∑的方程;
      (Ⅱ)求Ω的形心坐标.


    答案:
    解析:
    【分析】利用定义求旋转曲面∑的方程;利用三重积分求Ω的形心坐标.

  • 第16题:

    求曲面x2+2y2+3z2=21的切平面,使它平行于平面x+4y+6z=0。


    答案:
    解析:

  • 第17题:

    下列关于曲面方程的结论中,错误的是()。
    A. 2x2-3y2-z = 1表示双叶双曲面
    B. 2x2+3y2-z2=1表示单叶双曲面
    C. 2x2+3y2-z = 1表示椭圆抛物面
    D. 2(x2+y2)-z2=1 表示锥面


    答案:A
    解析:
    *错误的是A

  • 第18题:

    方程z=x2+y2表示的二次曲面是().

    A.球面
    B.柱面
    C.圆锥面
    D.抛物面

    答案:D
    解析:
    对照标准二次曲面的方程可知z=x2+y2表示的二次曲面是抛物面,故选D.

  • 第19题:

    曲面xyz=1上平行于x+y+z+3=0的切平面方程是:()

    • A、x+y+z=0
    • B、x+y+z=1
    • C、x+y+z=2
    • D、x+y+z=3

    正确答案:D

  • 第20题:

    下列关于曲面方程的结论中,错误的是()。

    • A、2x2-3y2-z=1表示双叶双曲面
    • B、2x2+3y2-z2=1表示单叶双曲面
    • C、2x2+3y2-z=1表示椭圆抛物面
    • D、2(x2+y2)-z2=1表示锥面

    正确答案:A

  • 第21题:

    单选题
    曲面z=χ2+y2在(-1,2,5)处的切平面方程是( )
    A

    2χ+4y+z=11

    B

    -2χ-4y+z=-1

    C

    2χ-4y-z=-15

    D

    2χ-4y+z=-5


    正确答案: D
    解析: 暂无解析

  • 第22题:

    单选题
    曲面xyz=1上平行于x+y+z+3=0的切平面方程是:()
    A

    x+y+z=0

    B

    x+y+z=1

    C

    x+y+z=2

    D

    x+y+z=3


    正确答案: B
    解析: 暂无解析

  • 第23题:

    填空题
    曲面z=x2+y2与平面2x+4y-z=0平行的切平面的方程是____。

    正确答案: 2x+4y-z-5=0
    解析:
    设曲面上有点P0(x0,y0,z0),使得曲面在此点的切平面与平面2x+4y-z=0平行,由曲面方程z=x2+y2得,曲面在P0处的法向量为(-2x0,-2y0,1),它应该与已知平面2x+4y-z=0的法向量n()=(2,4,-1)平行,即-2x0/2=-2y0/4=1/(-1),解得x0=1,y0=2,z0=x02+y02=5,故所求切平面方程为2(x-1)+4(y-2)-(z-5)=0,即2x+4y-z-5=0。