更多“若A是实对称矩阵,则A的特征值全为实数”相关问题
  • 第1题:

    N阶实对称矩阵A正定的充分必要条件是().



    A.A无负特征值
    B.A是满秩矩阵
    C.A的每个特征值都是单值
    D.A^-1是正定矩阵

    答案:D
    解析:
    A正定的充分必要条件是A的特征值都是正数,(A)不对;若A为正定矩阵,则A一定是满秩矩阵,但A是满秩矩阵只能保证A的特征值都是非零常数,不能保证都是正数,(B)不对;(C)既不是充分条件又不是必要条件;显然(D)既是充分条件又是必要条件,选(D).

  • 第2题:

    实二次型矩阵A正定的充分必要条件是( )。

    A.二次型的标准形的n个系数全为正
    B.|A|>0
    C.矩阵A的特征值为2
    D.r(A)=n

    答案:A
    解析:

  • 第3题:

    n阶实对称矩阵A为正定矩阵,则下列不成立的是( )。

    A.所有k级子式为正(k=1,2,…,n)
    B.A的所有特征值非负
    C.
    D.秩(A)=n

    答案:A
    解析:

  • 第4题:

    设A是n阶矩阵,且Ak=O(k为正整数),则( )。

    A.A一定是零矩阵
    B.A有不为0的特征值
    C.A的特征值全为0
    D.A有n个线性无关的特征向量

    答案:C
    解析:

  • 第5题:

    设A为n阶实对称矩阵,下列结论不正确的是().

    A.矩阵A与单位矩阵E合同
    B.矩阵A的特征值都是实数
    C.存在可逆矩阵P,使P^-1AP为对角阵
    D.存在正交阵Q,使Q^TAQ为对角阵

    答案:A
    解析:
    根据实对称矩阵的性质,显然(B)、(C)、(D)都是正确的,但实对称矩阵不一定是正定矩阵,所以A不一定与单位矩阵合同,选(A).

  • 第6题:

    设A是3阶实对称矩阵,P是3阶可逆矩阵,B=P-1AP,已知α是A的属于特征值λ的特征向量,则B的属于特征值λ的特征向量是:(A) Pα (B) P-1α (C) PTa (D) P(-1)Ta


    答案:A
    解析:
    解:选A。
    考察了实对称矩阵的特点,将选项分别代入检验可得到答案。

  • 第7题:

    设A为实对称矩阵,且A的特征值都大于零.证明:A为正定矩阵.


    答案:
    解析:

  • 第8题:

    设A是3阶实对称矩阵,满足,并且r(A)=2. (1) 求A的特征值. (2)当实数k满足什么条件时A+kE正定?


    答案:
    解析:

  • 第9题:

    设A为三阶实对称矩阵,A的秩为2,且

      (Ⅰ)求A的所有特征值与特征向量;
      (Ⅱ)求矩阵A.


    答案:
    解析:

  • 第10题:

    设M为3×3实数矩阵,a为M的实特征值λ的特征向量,则下列叙述正确的是( )。

    A、当λ≠0时,Ma垂直于a
    B、当λ>0时,Ma与a方向相反
    C、当λ<0时,Ma与a方向相反
    D、向量Ma与a共线

    答案:D
    解析:
    由已知得Ma=Aa,所以Ma与a共线。

  • 第11题:

    n阶实对称矩阵A为正定矩阵,则下列不成立的是()。

    • A、所有k级子式为正(k=1,2,…,n)
    • B、A的所有特征值非负
    • C、秩(A)=n

    正确答案:A

  • 第12题:

    若A是实对称矩阵,则若|A|>O,则A为正定的


    答案:错
    解析:

  • 第13题:

    设n阶矩阵A与对角矩阵相似,则().

    A.A的n个特征值都是单值
    B.A是可逆矩阵
    C.A存在n个线性无关的特征向量
    D.A一定为n阶实对称矩阵

    答案:C
    解析:
    矩阵A与对角阵相似的充分必要条件是其有n个线性无关的特征向量,A有n个单特征值只是其可对角化的充分而非必要条件,同样A是实对称阵也是其可对角化的充分而非必要条件,A可逆既非其可对角化的充分条件,也非其可对角化的必要条件,选(C).

  • 第14题:

    设A是实对称矩阵,C是实可逆矩阵,.则( ).

    A.A与B相似
    B.A与B不等价
    C.A与B有相同的特征值
    D.A与B合同

    答案:D
    解析:

  • 第15题:

    若A是实对称矩阵,则A为正定矩阵的充要条件是A的特征值全为正


    答案:对
    解析:

  • 第16题:

    设A是3阶实对称矩阵,P是3阶可逆矩阵,B=P-1AP,已知a是A的属于特征值λ的特征向量,则B的属于特征值λ的特征向量是:
    A. Pa B. P-1

    A C. PTa D.(P-1)Ta

    答案:B
    解析:

  • 第17题:

    设3阶实对称矩阵A的特征值为-1,1,1,与特征值-1对应的特征向量x=(-1,1,1)′,求A


    答案:
    解析:

  • 第18题:

    设A是三阶实对称矩阵,r(A)=1,A^2-3A=O,设(1,1,-1)t为A的非零特征值对应的特征向量.(1)求A的特征值;(2)求矩阵A.


    答案:
    解析:

  • 第19题:

    设A为四阶实对称矩阵,且A^2+A=O.若A的秩为3,则A相似于


    答案:D
    解析:
    这是一道常见的基础题,由Aα=λα,α≠0知A^nα=λ^nα,那么对于A^2+A=0(λ^2+λ)α=0λ^2+λ=0所以A的特征值只能是0或-1再由A是实对称必有A~A,而A即是A的特征值,那么由r(A)=3,可知(D)正确

  • 第20题:

    设A为3阶实对称矩阵,A的秩为2,且. (Ⅰ)求A的特征值与特征向量; (Ⅱ)求矩阵A


    答案:
    解析:

  • 第21题:

    若图的邻接矩阵是对称矩阵,则该图一定是()。


    正确答案:无向图

  • 第22题:

    单选题
    (2009)设A是3阶实对称矩阵,P是3阶可逆矩阵,B=P-1AP,已知α是A的属于特征值λ的特征向量,则B的属于特征值λ的特征向量是:()
    A

    B

    P-1α

    C

    PTα

    D

    (P-1)Tα


    正确答案: C
    解析: 暂无解析