更多“若二次函数y=f(x)的图像过点(0,o),(-1,1)和(-2,o),则f(x)=__________.”相关问题
  • 第1题:

    已知函数f(x)=㏑(x+2)-x2+bx+c,
    (1)若点P(-1,0)在f(x)的图象上,过点P的切线与直线y=-x+2平行,求f(x)的解析式;
    (2)若f(x)在区间[0,2]上单调递增,求b的取值范围。


    答案:
    解析:

  • 第2题:

    设函数f(x)具有2阶连续导数,若曲线y=f(x)过点(0,0)且与曲线y=^x在点(1,2)处相切,则=________.


    答案:1、2(ln2-1)
    解析:

  • 第3题:

    若函数f(x)=log2(5x+1),则其反函数y=f-1(x)的图像过点(  )

    A.(2,1)
    B.(3,2)
    C.(2,3)
    D.(4,3)

    答案:D
    解析:
    反函数与原函数的.27与y互换.把x=3,y=4代入,f(x)成立。 故反函数过点(4,3).(答案为D)

  • 第4题:

    ,则:

    A.f(x)为偶函数,值域为(-1,1)
    B.f(x)为奇函数,值域为(-∞,0)
    C.f(x)为奇函数,值域为(-1,1)
    D.f(x)为奇函数,值域为(0,+∞)

    答案:C
    解析:

  • 第5题:

    设函数z=f(x,y)的全微分为dz=xdx+ydy,则点(0,0)( )《》( )

    A.不是f(x,y)的连续点
    B.不是f(x,y)的极值点
    C.是f(x,y)的极大值点
    D.是f(x,y)的极小值点

    答案:D
    解析:

  • 第6题:

    若连续函数y=f(x)在x0点不可导,则曲线y=f(x)在(x0,f(x0))点没有切线.


    正确答案:错误

  • 第7题:

    若函数f(x,y)在闭区域D上连续,下列关于极值点的陈述中正确的是()。

    • A、f(x,y)的极值点一定是f(x,y)的驻点
    • B、如果P0是f(x,y)的极值点,则P0点处B2-AC<0
    • C、如果P0是可微函数f(x,y)的极值点,则P0点处df=0
    • D、f(x,y)的最大值点一定是f(x,y)的极大值点

    正确答案:C

  • 第8题:

    单选题
    以下关于二元函数的连续性的说法正确是(  )。
    A

    若f(x,y)沿任意直线y=kx在点x=0处连续,则f(x,y)在(0,0)点连续

    B

    若f(x,y)在点(x0,y0)点连续,则f(x0,y)在y0点连续,f(x,y0)在x0点连续

    C

    若f(x,y)在点(x0,y0)点处偏导数fx′(x0,y0)及fy′(x0,y0)存在,则f(x,y)在(x0,y0)处连续

    D

    以上说法都不对


    正确答案: D
    解析:
    根据二元函数f(x,y)在(x0,y0)出连续的定义可知B项正确。

  • 第9题:

    单选题
    y=f(x)是方程y″-2y′+4y=0的一个解,若f(x0)>0,f′(x0)=0,则函数f(x)(  )。
    A

    在x0点取得极大值

    B

    在x0的某邻域单调增加

    C

    在x0点取得极小值

    D

    在x0的某邻域单调减少


    正确答案: D
    解析:
    由f′(x0)=0代入y″-2y′+4y=0可得y″(x0)=-4y(x0)<0。又f′(x0)=0,故函数y=f(x)在x0处取得极大值。

  • 第10题:

    填空题
    函数y=f(x)是由方程xy+2lnx=y4所确定,则曲线y=f(x)在点(1,1)处的切线方程为____。

    正确答案: x-y=0
    解析:
    xy+2lnx=y4两端对x求导,得y+xy′+2/x=4y3·y′。x=1时,y=1,y′(1)=1,则切线方程为y-1=x-1,即x-y=0。

  • 第11题:

    单选题
    函数y=f(x)是由方程xy+2lnx=y4所确定,则曲线y=f(x)在点(1,1)处的切线方程为(  )。
    A

    -x-y=0

    B

    x-y-1=0

    C

    x-y=0

    D

    x+y=0


    正确答案: A
    解析:
    xy+2lnx=y4两端对x求导,得y+xy′+2/x=4y3·y′。x=1时,y=1,y′(1)=1,则切线方程为y-1=x-1,即x-y=0。

  • 第12题:

    单选题
    若函数f(x,y)在闭区域D上连续,下列关于极值点的陈述中正确的是()。
    A

    f(x,y)的极值点一定是f(x,y)的驻点

    B

    如果P0是f(x,y)的极值点,则P0点处B2-AC<0

    C

    如果P0是可微函数f(x,y)的极值点,则P0点处df=0

    D

    f(x,y)的最大值点一定是f(x,y)的极大值点


    正确答案: C
    解析: 暂无解析

  • 第13题:

    已知二次函数f(x)的二次项系数为实数a,且其图像与直线2x+y=0交点横坐标为1和3.
    (1)若方程f(x)+6a=0有两个相等的实数根,求f(x)的解析式;
    (2)若f(x)的最大值为正数,求实数n的取值范围.


    答案:
    解析:
    解:根据题意f(x)与2x+y=0的交点为(1,-2)、(3,-6),设f(x)=ax2+bx+c,将上述两个交点代入,有a+b+c=-2,9a+36+c=-6,整理可得b=-2-4a,c=3a.

  • 第14题:

    若函数z=f(x,y)在点P0(x0,y0)处可微,则下面结论中错误的是(  )。



    答案:D
    解析:
    二元函数z=f(x,y)在点(x0,y0)处可微,可得到如下结论:①函数在点(x0,y0)处的偏导数一定存在,C项正确;②函数在点(x0,y0)处一定连续,AB两项正确;可微,可推出一阶偏导存在,但一阶偏导存在不一定一阶偏导在P0点连续,也有可能是可去或跳跃间断点,故D项错误。

  • 第15题:

    若函数f(x,y)在闭区域D上连续,下列关于极值点的陈述中正确的是:

    A.f(x,y)的极值点一定是f(x,y)的驻点
    B.如果P0是f(x,y)的极值点,则P0点处B2-AC
    C.如果P0是可微函数f(x,y)的极值点,则在P0点处df=0
    D.f(x,y)的最大值点一定是f(x,y)的极大值点

    答案:C
    解析:
    提示 在题目中只给出f(x,y)在闭区域D上连续这一条件,并未讲函数f(x,y)在P0点是否具有一阶、二阶偏导,而选项A、B判定中均利用了这个未给的条件,因而选项A、B不成立。选项D中f(x,y)的最大值点可以在D的边界曲线上取得,因而不一定是f(x,y)的极大值点,故选项D不成立。
    在选项C中,给出p0是可微函数的极值点这个条件,因而f(x,y)在P0偏导存在,且

  • 第16题:

    若函数f(x,y)在闭区域D上连续,下列关于极值点的陈述中正确的是( )。
    A. f(x,y)的极值点一定是f(x,y)的驻点
    B.如果P0是f(x,y)的极值点,则P0点处B2-AC)
    C.如果P0是可微函数f(x,y)的极值点,则P0点处df=0
    D.f(x,y)的最大值点一定是f(x,y)的极大值点


    答案:C
    解析:
    提示:如果P0是可微函数f(x,y)的极值点,由极值存在必要条件,在P0点处有

  • 第17题:

    设函数f(x,y)=x3+y3-3xy,则()。

    • A、f(0,0)为极大值
    • B、f(0,0)为极小值
    • C、f(1,1)为极大值
    • D、f(1,1)为极小值

    正确答案:D

  • 第18题:

    设y=f(x)是微分方程y"-2y’+4y=0的一个解,又f(x0)>O,f’(x0)=0,则函数f(x)在点x0().

    • A、取得极大值
    • B、取得极小值
    • C、的某个邻域内单调增加
    • D、的某个邻域内单调减少

    正确答案:A

  • 第19题:

    填空题
    设函数y=y(x)由方程y=f(x2+y2)+f(x+y)所确定,且y(0)=2,其中f是可导函数,f′(2)=1/2,f′(4)=1,则dy/dx|x=0=____。

    正确答案: -1/7
    解析:
    由方程y=f(x2+y2)+f(x+y)。两边对x求导得yx′=f′(x2+y2)(2x+2y·yx′)+f′(x+y)(1+yx′)。
    又y(0)=2,f′(2)=1/2,f′(4)=1,,故y′|x0=f′(4)·4y′|x0+f′(2)(1+y′|x0),y′|x0=4y′|x0+(1+y′|x0)/2,解得y′|x0=-1/7。

  • 第20题:

    单选题
    设函数f(x)满足关系式f″(x)+[f′(x)]2=x,且f′(0)=0,则(  )。
    A

    f(0)是f(x)的极大值

    B

    f(0)是f(x)的极小值

    C

    点(0,f(0))是曲线y=f(x)的拐点

    D

    f(0)不是f(x)的极值,点(0,f(0))也不是曲线y=f(x)的拐点


    正确答案: C
    解析:
    已知f″(x)+[f′(x)]2=x,方程两边对x求导得f‴(x)+2f″(x)·f′(x)=1,由f′(0)=0,则f″(0)=0,f‴(0)=1,故在点x=0的某邻域内f″(x)单调增加,即f″(0)与f″(0)符号相反,故点(0,f(0))是曲线y=f(x)的拐点。

  • 第21题:

    判断题
    若连续函数y=f(x)在x0点不可导,则曲线y=f(x)在(x0,f(x0))点没有切线.
    A

    B


    正确答案:
    解析: 暂无解析

  • 第22题:

    单选题
    设y=f(x)是微分方程y"-2y’+4y=0的一个解,又f(x0)>O,f’(x0)=0,则函数f(x)在点x0().
    A

    取得极大值

    B

    取得极小值

    C

    的某个邻域内单调增加

    D

    的某个邻域内单调减少


    正确答案: D
    解析: 暂无解析

  • 第23题:

    单选题
    函数y=f(x)是由方程xy+2lnx=y4所确定,则曲线y=f(x)在点(1,1)处的切线方程为(  )。
    A

    x-y=0

    B

    x+y=0

    C

    -x-y=0

    D

    -x+y=0


    正确答案: C
    解析:
    xy+2lnx=y4两端对x求导,得y+xy′+2/x=4y3·y′。x=1时,y=1,y′(1)=1,则切线方程为y-1=x-1,即x-y=0。