更多“A. xf'(x)-f'(x)+c B.xf'(x)-f(x)+c C.xf'(x)+f'(x)+c D.xf'(x)-f(x)+c”相关问题
  • 第1题:

    设函数f(x),g(x)在[a,b]上均可导(a<b),且恒正,若f′(x)g(x)+f(x)g′(x)>0,则当x∈(a,b)时,下列不等式中成立的是(  )。

    A. [f(x)/g(x)]>[f(a)/g(b)]
    B. [f(x)/g(x)]>[f(b)/g(b)]
    C. f(x)g(x)>f(a)g(a)
    D. f(x)g(x)>f(b)g(b)

    答案:C
    解析:
    因为[f(x)g(x)]′=f′(x)g(x)+f(x)g′(x)>0,所以函数f(x)g(x)在[a,b]上单调递增。所以,当x∈(a,b)时,f(a)g(a)<f(x)g(x)<f(b)g(b)。

  • 第2题:

    不定积分∫xf"(x)dx等于:

    A.xf'(x)-f'(x)+c
    B.xf'(x)-f(x)+c
    C.xf'(x)+f'(x)+c
    D.xf'(x)+f(x)+c

    答案:B
    解析:

  • 第3题:


    A.f(-x,y)=f(x,y),f(x,-y)=-f(x,y)
    B.f(-x,y)=f(x,y),f(x,-y)=f(x,y)
    C.f(-x,y)=-f(x,y),f(x,-y)=-f(x,y)
    D.f(-x,y)=-f(x,y),f(x,-y)=f(x,y)

    答案:B
    解析:
    要求f(x,y)关于x和y都是偶函数。

  • 第4题:

    不定积分∫xf(x)dx等于( )。
    A. xf(x)-f(x) + C B. xf(x)-f(x) + C
    C. xf(x) + f(x) + C D. xf(x) +f(x)+ C


    答案:B
    解析:
    提示:用分部积分法。

  • 第5题:

    设函数f(x),g(x)是大于零的可导函数,且f′(x)g(x)-f(x)g′(x)<0,则当a<x<b时有( )《》( )

    A.f(x)g(b)>f(b)g(x)
    B.f(x)g(a)>f(a)g(x)
    C.f(x)g(x)>f(b)g(b)
    D.f(x)g(x)>f(a)g(a)

    答案:A
    解析:

  • 第6题:

    若f(x)、F(x)分别为随机变量X的密度函数、分布函数,则( )。

    A.F(x)=f(x)
    B.F(x)≥f(x)
    C.F(x)≤f(x)
    D.f(x)=-F'(x)

    答案:D
    解析:

  • 第7题:

    设F(x)是f(x)的一个原函数,则∫e-xf(e-x)dx等于下列哪一个函数?()

    • A、F(e-x)+c
    • B、-F(e-x)+c
    • C、F(ex)+c
    • D、-F(ex)+c

    正确答案:B

  • 第8题:

    若f″(x)存在,则函数y=ln[f(x)]的二阶导数为:()

    • A、(f″(x)f(x)-[f′(x)]2)/[f(x)]2
    • B、f″(x)/f′(x)
    • C、(f″(x)f(x)+[f′(x)]2)/[f(x)]2
    • D、ln″[f(x)]·f″(x)

    正确答案:A

  • 第9题:

    设z=f(x2+y2),其中f具有二阶导数,则等于().

    • A、2f’(x2+y2)
    • B、4x2f"(x2+y2)
    • C、2’(x2+y2)+4x2f"(x2+y2)
    • D、2xf"(x2+y2)

    正确答案:C

  • 第10题:

    单选题
    设f(u,v)是二元可微函数,z=f(y/x,x/y),则x∂z/∂x-y∂z/∂y=(  )。
    A

    -yf1′/x+xf2′/y

    B

    2(-yf1′/x+xf2′/y)

    C

    -yf1′/x+2xf2′/y

    D

    -yf1′/x+f2′/y


    正确答案: A
    解析:
    设f1′为函数f(u,v)对第一中间变量的偏导,f2′为函数f(u,v)对第二中间变量的偏导,则∂z/∂x=f1′·(-y/x2)+f2′·(1/y),∂z/∂y=f1′·(1/x)+f2′·(-x/y2),x∂z/∂x-y∂z/∂y=2(-yf1′/x+xf2′/y)。

  • 第11题:

    单选题
    设y=f(lnx)ef(x),其中f可微,则dy=(  )。
    A

    [f(lnx)ef(x/x+f′(x)f(lnx)ef(x]dx

    B

    [f′(lnx)ef(x/x+f′(x)f(lnx)ef(x]dx

    C

    [f′(lnx)ef(x/x+f(x)f(lnx)ef(x]dx

    D

    [f(lnx)ef(x/x+f(x)f(lnx)ef(x]dx


    正确答案: A
    解析:
    由y′=f′(lnx)ef(x/x+f′(x)f(lnx)ef(x,得dy=[f′(lnx)ef(x/x+f′(x)f(lnx)ef(x]dx。

  • 第12题:

    单选题
    若f″(x)存在,则函数y=ln[f(x)]的二阶导数为:()
    A

    (f″(x)f(x)-[f′(x)]2)/[f(x)]2

    B

    f″(x)/f′(x)

    C

    (f″(x)f(x)+[f′(x)]2)/[f(x)]2

    D

    ln″[f(x)]·f″(x)


    正确答案: B
    解析: 暂无解析

  • 第13题:

    若∫f(x)dx=F(x)+C,则∫xf(1-x^2)dx=(  )。

    A. F(1-x^2)+C
    B. -(1/2)F(1-x^2)+C
    C. (1/2)F(1-x^2)+C
    D. -(1/2)F(x)+C

    答案:B
    解析:
    ∫xf(1-x^2)dx=(-1/2)∫f(1-x^2)d(1-x^2)=(-1/2)F(1-x^2)+C
    这里C均表示常数。

  • 第14题:

    若f(-x)=f(x),且在(0,+∞)内f′(x)>0,f″(x)<0,则f(x)在(-∞,0)内( )。《》( )

    A.f′(x)<0,f″(x)<0
    B.f′(x)<0,f″(x)>0
    C.f′(x)>0,f″(x)<0
    D.f′(x)>0,f″(x)>0

    答案:A
    解析:
    已知在给出的(0,+∞)内,f′(x)>0,f″(x)<0,故在(0,+∞)上f(x)单调递增,且图形是凸的,再根据已知条件f(-x)=f(x)可知f(x)是偶函数,利用图形的对称性可得出f(x)在(-∞,0)是单调递减且也是凸的。故应该选择A。

  • 第15题:

    设,在x=0连续,且对任何x,y∈R有f(x﹢y)=f(x)﹢f(y)
    证明:(1)f在R上连续;(2)f(x)=xf(1)。


    答案:
    解析:
    (1)因f(0) =f(0+0)=f(0) +f(0) =2f(0),所以f(0)=0。又对任意算∈(一∞,+∞)有△y=f(x+△x) -f(x) =f(x) +f(△x) -f(x) =f(△x)

    (2)先证对任意有理数r,都有以rx)=rf(x)。事实上,令y=x,得以2x)=2f(x),由数学归纳法

  • 第16题:

    设f(x)为连续函数,那么等于( )。
    A. f(x + b) + f(x+a) B. f(x + b)-f(x + a) C. f(x+b)-f(a) D. f(b)-f(x+a)


    答案:B
    解析:

  • 第17题:

    若f(x)=-f(-x),在(0,+∞)内f′(x)>0,f″(x)>0,则在(-∞,0)内( )《》( )

    A.f′(x)<f″(x)<0
    B.f′(x)<f″(x)>0
    C.f′(x)>f″(x)<0
    D.f′(x)>f″(x)>0

    答案:C
    解析:

  • 第18题:

    烤烟XF各等级代号为X1F、X2F、()。
    X3F、X4F

  • 第19题:

    不定积分∫xf″(x)dx等于:()

    • A、xf′(x)-f′(x)+c
    • B、xf′(x)-f(x)+c
    • C、xf′(x)+f′(x)+c
    • D、xf′(x)+f(x)+c

    正确答案:B

  • 第20题:

    X→Y∈F+()

    • A、X∈XF+
    • B、X∈YF+
    • C、Y∈YF+
    • D、Y∈XF+

    正确答案:D

  • 第21题:

    单选题
    不定积分∫xf″(x)dx等于:()
    A

    xf′(x)-f′(x)+c

    B

    xf′(x)-f(x)+c

    C

    xf′(x)+f′(x)+c

    D

    xf′(x)+f(x)+c


    正确答案: B
    解析: 暂无解析

  • 第22题:

    单选题
    ∫xf″(x)dx=(  )。
    A

    xf′(x)-∫f(x)dx

    B

    xf′(x)-f′(x)+C

    C

    xf′(x)-f(x)+C

    D

    f(x)-xf′(x)+C


    正确答案: B
    解析:
    ∫xf″(x)dx=∫xd[f′(x)]=xf′(x)-∫f′(x)dx=xf′(x)-f(x)+C。

  • 第23题:

    单选题
    若∫f(x)dx=F(x)+C,则∫xf(1-x2)dx=(  )。[2018年真题]
    A

    F(1-x2)+C

    B

    (-1/2)F(1-x2)+C

    C

    (1/2)F(1-x2)+C

    D

    (-1/2)F(x)+C


    正确答案: B
    解析:
    计算得∫xf(1-x2)dx=(-1/2)∫f(1-x2)d(1-x2)=(-1/2)F(1-x2)+C,这里C均表示常数。