更多“已知是某二阶常系数非齐次线性微分方程的3个解,则该方程的通解为y=________.”相关问题
  • 第1题:

    若二阶常系数线性齐次微分方程y"+ay'+by=0的通解为y=(C1+C2x)e^x,则非齐次方程y"+ay'+by=x满足条件y(0)=2,y'(0)=0的解为y=________.


    答案:1、y=-xe^x+x+2.
    解析:

  • 第2题:

    下列解中是某二阶常微分方程的通解为《》( )



    答案:B
    解析:

  • 第3题:

    设y1(x)、y2(x)是二阶常系数线性微分方程y″+py′+qy=0的两个线性无关的解,则它的通解为______.


    答案:
    解析:
    由二阶线性常系数微分方程解的结构可知所给方程的通解为其中C1,C2为任意常数.

  • 第4题:

    二阶常系数齐次微分方程y″-4y′+4y=0的通解为_____.


    答案:
    解析:

  • 第5题:

    线性常系数微分方程表示的系统,方程的齐次解称为自由响应。


    正确答案:正确

  • 第6题:

    单选题
    如果二阶常系数非齐次线性微分方程y″+ay′+by=e-xcosx有一个特解y*=e-x(xcosx+xsinx),则(  )。
    A

    a=-1,b=1

    B

    a=1,b=-1

    C

    a=2,b=1

    D

    a=2,b=2


    正确答案: D
    解析:
    由题意可得-1+i为特征方程λ2+aλ+b=0的根,故(i-1)2+a(i-1)+b=0。可得a=2,b=2,故应选(D)。

  • 第7题:

    单选题
    设y1=3+x2,y2=3+x2+e-x是某二阶线性非齐次微分方程的两个特解,且相应的齐次方程有一个解为y3=x,则该方程的通解为(  )。
    A

    y=3-x2+c1x+c2e-x

    B

    y=3+x2-c1x+c2e-x

    C

    y=3+x2+c1x+c2e-x

    D

    y=3+x2+c1x-c2e-x


    正确答案: B
    解析:
    由解的叠加原理可知,y2-y1=e-x是原方程对应齐次方程的一个特解,可知该特解与题中给出的y3=x线性无关,则原方程的通解为y=3+x2+c1x+c2e-x

  • 第8题:

    单选题
    设y=ex(c1sinx+c2cosx)(c1、c2为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为(  )。
    A

    y″-y′+y=0

    B

    y″-2y′+2y=0

    C

    y″-2y′=0

    D

    y′+2y=0


    正确答案: B
    解析:
    根据题中所给的通解y=ex(c1sinx+c2cosx)的结构可知,所求方程对应的特征根为λ12=1±i,特征方程为[λ-(1+i)][λ-(1-i)]=λ2-2λ+2=0,则所求方程为y″-2y′+2y=0。

  • 第9题:

    填空题
    已知y1=x为微分方程x2y″-2xy′+2y=0之一解,则此方程的通解为____。

    正确答案: y=c1x+c2x2
    解析:
    设与y2是与y1线性无关的一个特解,则y2′=u+xu′,y2″=2u′+xu″,其代入x2y″-2xy′+2y=0中,得2x2u′+x3u″-2xu-2x2u′+2xu=0,即x3u″=0。u″=0,得u=x,即y2=x2。故原方程的通解为y=c1x+c2x2

  • 第10题:

    填空题
    已知y1=cos2x-xcos2x/4,y2=sin2x-xcos(2x)/4是某二阶常系数线性非齐次方程的两个解,则该方程为____。

    正确答案: y″+4y=sin2x
    解析:
    由解的结构可知,y1-y2=cos2x-sin2x是原方程所对应的齐次方程的解,故y(_)1=cos2x,y(_)2=sin2x是齐次方程的两个线性无关解,且齐次方程对应的特征方程的根为±2i,则其特称方程为r2+4=0。故齐次方程为y″+4y=0。而y*=-xcos2x /4为所求非齐次方程的一个特解,设所求非齐次方程为y″+4y=f(x),将该特解代入得f(x)=-(1/4)(-4sin2x-4xcos2x)+4[-xcos(2x) /4]=sin2x。则所求非齐次方程为y″+4y=sin2x。

  • 第11题:

    单选题
    已知y1=cos2x-xcos2x/4,y2=sin2x-xcos(2x)/4是某二阶常系数线性非齐次方程的两个解,则该方程为(  )。
    A

    y″+4y=sin2x

    B

    y″-4y=sin2x

    C

    y′+4y=sin2x

    D

    y′-4y=sin2x


    正确答案: A
    解析:
    由解的结构可知,y1-y2=cos2x-sin2x是原方程所对应的齐次方程的解,故y(_)1=cos2x,y(_)2=sin2x是齐次方程的两个线性无关解,且齐次方程对应的特征方程的根为±2i,则其特称方程为r2+4=0。故齐次方程为y″+4y=0。而y*=-xcos2x/4为所求非齐次方程的一个特解,设所求非齐次方程为y″+4y=f(x),将该特解代入得f(x)=-(1/4)(-4sin2x-4xcos2x)+4[-xcos(2x)/4]=sin2x。则所求非齐次方程为y″+4y=sin2x。

  • 第12题:

    单选题
    设y=ex(c1sinx+c2cosx)(c1、c2为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为(  )。
    A

    y″+2y′+2y=0

    B

    y″-2y′+2y=0

    C

    y″-2y′-2y=0

    D

    y″+2y′+2y=0


    正确答案: A
    解析:
    根据题中所给的通解y=ex(c1sinx+c2cosx)的结构可知,所求方程对应的特征根为λ12=1±i,特征方程为[λ-(1+i)][λ-(1-i)]=λ2-2λ+2=0,则所求方程为y″-2y′+2y=0。

  • 第13题:

    3阶常系数线性齐次微分方程的通解为y=________


    答案:
    解析:

  • 第14题:

    以.为通解的二阶线性常系数齐次微分方程为_____


    答案:
    解析:
    所给问题为求解微分方程的反问题.常见的求解方法有两种:解法1先由通解写出二阶线性常系数齐次微分方程的特解,再由此写出方程的特征根r1,
    r2,第三步写出特征方程(r-r1)(r-r2)=0,再依此写出相应的微分方程;
    解法2由所给方程的通解,利用微分法消去任意常数,得出微分方程.这里只利用解法1求解.由于二阶线性常系数齐次微分方程的通解为,由其解的结构定理可知方程有两个特解:,从而知道特征方程的二重根r=1.

  • 第15题:

    二阶线性常系数齐次微分方程y″+2y=0的通解为____.


    答案:
    解析:

  • 第16题:

    设y1、y2是二阶常系数线性齐次方程y"+p1y'十p2y=0的两个特解,C1、C2为两个任意常数,则下列命题中正确的是()

    A.C1y1+C2y2为该方程的通解
    B.C1y1+C2y2不可能是该方程的通解
    C.C1y1+C2y2为该方程的解
    D.C1y1+C2y2不是该方程的解

    答案:C
    解析:
    由线性方程解的结构定理知应选C.仅当y1、y2为线性无关特解时,A才正确.

  • 第17题:

    线性常系数微分方程表示的系统,方程的齐次解称之自由响应,特解称之强迫响应。


    正确答案:正确

  • 第18题:

    填空题
    若二阶常系数线性齐次微分方程y″+ay′+by=0的通解为y=(C1+C2x)ex,则非齐次方程y″+ay′+by=x满足条件y(0)=2,y′(0)=0的解为y=____。

    正确答案: -xex+x+2
    解析:
    由题意可知,r=1是已知齐次方程对应的特征方程的二重根,则该特征方程为(r-1)2=r2-2r+1=0,齐次方程为y″-2y′+y=0设y*=Ax+B为已知非齐次方程y″-2y′+y=x的特解,代入y″-2y′+y=x得0-2A+Ax+B=x,则A=1,B=2A=2。故已知非齐次方程的通解为y=(C1+C2x)ex+x+2。又y(0)=2,y′(0)=0,代入以上通解得C1=0,C2=-1。故所求方程特解为y=-xex+x+2。

  • 第19题:

    单选题
    若二阶常系数线性齐次微分方程y″+ay′+by=0的通解为y=(C1+C2x)ex,则非齐次方程y″+ay′+by=x满足条件y(0)=2,y′(0)=0的解为y=(  )。
    A

    xex+x2+2

    B

    -xex+x2+2

    C

    -xex+x+2

    D

    -xex+x


    正确答案: C
    解析:
    由题意可知,r=1是已知齐次方程对应的特征方程的二重根,则该特征方程为(r-1)2=r2-2r+1=0,齐次方程为y″-2y′+y=0设y*=Ax+B为已知非齐次方程y″-2y′+y=x的特解,代入y″-2y′+y=x得0-2A+Ax+B=x,则A=1,B=2A=2。故已知非齐次方程的通解为y=(C1+C2x)ex+x+2。又y(0)=2,y′(0)=0,代入以上通解得C1=0,C2=-1。故所求方程特解为y=-xex+x+2。

  • 第20题:

    填空题
    已知某二阶非齐次线性微分方程的三个解分别为y1=ex,y2=xex,y3=x2ex,则它的通解为____。

    正确答案: y=C1(x-1)ex+C2(x2-1)ex+ex
    解析:
    因为y1=ex,y2=xex,y3=x2ex是二阶非齐次微分方程的特解,故xex-ex,x2ex-ex是该微分方程对应齐次微分方程的两个线性无关的解。故二阶非齐次微分方程的通解为y=C1(xex-ex)+C2(x2ex-ex)+ex,化简可得y=C1(x-1)ex+C2(x2-1)ex+ex

  • 第21题:

    填空题
    设y=ex(c1sinx+c2cosx)(c1、c2为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为____。

    正确答案: y″-2y′+2y=0
    解析:
    根据题中所给的通解y=ex(c1sinx+c2cosx)的结构可知,所求方程对应的特征根为λ12=1±i,特征方程为[λ-(1+i)][λ-(1-i)]=λ2-2λ+2=0,则所求方程为y″-2y′+2y=0。

  • 第22题:

    填空题
    设y1=3+x2,y2=3+x2+e-x是某二阶线性非齐次微分方程的两个特解,且相应的齐次方程有一个解为y3=x,则该方程的通解为____。

    正确答案: y=3+x2+c1x+c2e-x
    解析:
    由解的叠加原理可知,y2-y1=ex是原方程对应齐次方程的一个特解,可知该特解与题中给出的y3=x线性无关,则原方程的通解为y=3+x2+c1x+c2ex

  • 第23题:

    问答题
    设y1=x,y2=x+e2x,y3=x(1+e2x)是二阶常系数线性非齐次方程的特解,求该方程及其通解。

    正确答案:
    由题意可知,y2-y1=e2x,y3-y1=xe2x是对应齐次方程的两个线性无关的解,齐次方程的通解为y(_)=(C1+C2x)e2x,且特征方程有二重根r1,2=2,则特征方程为(r-2)2=r2-4r+4=0,则齐次方程为y″-4y′+4y=0。
    令所求非齐次方程为y″-4y′+4y=f(x),将其解之一y1=x代入得f(x)=4x-4,则所求方程为y″-4y′+4y=4x-4,又齐次方程的通解为y(_)=(C1+C2x)e2x,且非齐次方程的通解为y=(C1+C2x)e2x+x。
    解析: 暂无解析