更多“设A=,B为三阶非零矩阵,且AB=O,则r(A)=_______.”相关问题
  • 第1题:

    设A,B都是,n阶矩阵,其中B是非零矩阵,且AB=O,则().

    A.r(B)=n
    B.r(B)C.A2-Bz=(A+B)(A-B)
    D.|A|=0

    答案:D
    解析:
    因为AB=O,所以r(A)+r(B)≤n,又因为B是非零矩阵,所以r(B)≥1,从而r(A)小于n,于是|A|=0,选(D).

  • 第2题:

    设A是m×n矩阵,B是n×m矩阵,且AB=E,其中E为m阶单位矩阵,则( )


    A.r(A)=r(B)=m
    B.r(A)=m r(B)=n
    C.r(A)=n r(B)=m
    D.r(A)=r(B)=n

    答案:A
    解析:

  • 第3题:

    设A、B均为n阶非零矩阵,且AB=0,则R(A),R(B)满足:

    A.必有一个等于0
    B.都小于n
    C. 一个小于n,一个等于n
    D.都等于n

    答案:B
    解析:
    提示:利用矩阵的秩的相关知识,可知A、B均为n阶非零矩阵,且AB=0,则有 R(A)+R(B)≤n,而 A、B 已知为 n 阶非零矩阵,1≤R(A)≤n,1≤R(B)≤n,所以 R(A)、 R(B) 都小于n。

  • 第4题:

    设A是三阶矩阵,且|A|=4,则=_______.


    答案:1、2
    解析:

  • 第5题:

    设A为三阶矩阵,A的第一行元素为a,b,c且不全为零,又B=且AB=0,求方程组AX=0的通解.


    答案:
    解析:

  • 第6题:

    设A为三阶矩阵,且|A|=4,则=_______.


    答案:
    解析:

  • 第7题:

    设A=图},B≠0为三阶矩阵,且BA=0,则r(B)=_______.{


    答案:1、1
    解析:
    BA=0r(A)+r(B)≤3,因为r(A)≥2,所以r(B)≤1,又因为B≠0,所以r(B)=1.

  • 第8题:

    设A是4×3矩阵,且r(A)=2,而,则r(AB)=_________.


    答案:1、2.
    解析:
    基础题,本题是考查矩阵乘积的秩的公式:如果A可逆,则r(AB)=r(B);r(BA)=r(B).本题|B|=10≠0,故B为可逆矩阵,因此r(AB)=r(A)=2

  • 第9题:

    设A,B分别为m×n及n×s阶矩阵,且AB=O.证明:r(A)+r(B)≤n,


    答案:
    解析:

  • 第10题:

    设B≠O为三阶矩阵,且矩阵B的每个列向量为方程组的解,则k=_______,|B|=_______.


    答案:1、0
    解析:
    ,因为B的列向量为方程组的解且B≠0,所以AB=0且方程组有非零解,故|A|=0,解得k=1.因为AB=O,所以r(A)+r(B)≤3且r(A)≥1,于是r(B)≤2小于3,故|B|=0.

  • 第11题:

    设A,B为三阶矩阵且A不可逆,又AB+2B=O 且r(B)=2,则 |A+4E|=

    A.8
    B.16
    C.2
    D.0

    答案:B
    解析:

  • 第12题:

    填空题
    设,B为三阶非零矩阵,且AB=0,则t=____。

    正确答案: -3
    解析:
    由B是三阶非零矩阵,且AB=0,知B的列向量是方程组AB=0的解且为非零解,故|A|=0,解得t=-3。

  • 第13题:

    设A,B皆为n阶矩阵,则下列结论正确的是().

    A.AB=O的充分必要条件是A=O或B-O
    B.AB≠O的充分必要条件是A≠0且B≠0
    C.AB=O且r(A)=N,则B=O
    D.若AB≠0,则|A|≠0或|B|≠0

    答案:C
    解析:

  • 第14题:

    设A为四阶非零矩阵,且r(A^*)=1,则().

    A.r(A)=1
    B.r(A)=2
    C.r(A)=3
    D.r(A)=4

    答案:C
    解析:
    因为r(A^*)=1,所以r(A)=4-1=3,选(C).

  • 第15题:

    设A、B均为n阶非零矩阵,且AB=0,则R(A),R(B)满足:
    A.必有一个等于0 B.都小于n
    C. 一个小于n,一个等于n D.都等于n


    答案:B
    解析:
    提示:利用矩阵的秩的相关知识,可知A、B均为n阶非零矩阵,且AB = 0,则有R(A)+ R(B)≤n,而已知为n阶非零矩阵,1≤R(A)≤n,1≤R(B)≤n,所以R(A)、R(B)都小于n。

  • 第16题:

    设A是4×3阶矩阵且r(A)=2,B=,则r(AB)=_______.


    答案:1、2
    解析:
    因为|B|=10≠0,所以r(AB)=r(A)=2.

  • 第17题:

    设A为n阶非零矩阵,且存在自然数k,使得A^k=O.证明:A不可以对角化.


    答案:
    解析:

  • 第18题:

    若矩阵A=,B是三阶非零矩阵,满足AB=O,则t=_______.


    答案:1、1
    解析:
    由AB=0得r(A)+r(B)≤3,因为r(B)≥1,所以r(A)≤2,又因为矩阵A有两行不成比例,所以r(A)≥2,于是r(A)=2.
      由得t=1.

  • 第19题:

    ,B为三阶非零矩阵,且AB=0,则t=________.


    答案:1、-3.
    解析:
    由AB=0,对B按列分块有AB=A(β1,β2,β3)=(Aβ1,Aβ2,Aβ3)=(0,0,0),即β1,β2,β3是齐次方程组Ax=0的解,又因B≠0,故Ax=0有非零解,那么若熟悉公式:AB=0,则r(A)+r(B)≤n.可知r(A)<3.亦可求出t=-3.
    【评注】对于AB=O要有B的每个列向量都是齐次方程组Ax=0的构思,还要有秩r(A)+r(B)≤n的知识.

  • 第20题:

    设A是三阶实对称矩阵,r(A)=1,A^2-3A=O,设(1,1,-1)t为A的非零特征值对应的特征向量.(1)求A的特征值;(2)求矩阵A.


    答案:
    解析:

  • 第21题:

    设A=,且存在三阶非零矩阵B,使得AB=O,则a=_______,b=_______.


    答案:1、2 2、1
    解析:
    ,因为AB=O,所以r(A)+r(B)≤3,又B≠O,于是r(B)≥1,故r(A)≤2,从而a=2,b=1.

  • 第22题:

    设A=(aij)是三阶非零矩阵,|A|为A的行列式,Aij为aij的代数余子式,若aij+Aij=0(i,j=1,2,3),则|A|=________.


    答案:1、-1.
    解析:

  • 第23题:

    都是n(n≥3)阶非零矩阵,且AB=O,则r(B)=( )

    A. 0
    B.1
    C. 2
    D. 3

    答案:B
    解析: