求直线 绕 轴旋转一周的旋转曲面的方程,并求该曲面与平面所围立体的体积。

题目
求直线 轴旋转一周的旋转曲面的方程,并求该曲面与平面所围立体的体积。


相似考题
参考答案和解析
答案:
解析:
更多“求直线 绕 轴旋转一周的旋转曲面的方程,并求该曲面与平面所围立体的体积。”相关问题
  • 第1题:

    直线H/Rx(x≥0)与及y轴所围图形绕y轴旋转一周所得旋转体的体积为(H,R为任意常数):


    答案:A
    解析:
    提示:画出平面图形,平面图形绕y轴旋转,旋转体的体积可通过下面方法计算。

  • 第2题:

    求曲线y=,直线z=1和z轴所围成的有界平面图形的面积s,及该平面图形绕2轴旋转一周所得旋转体的体积V.


    答案:
    解析:


  • 第3题:

    已知函数(x)=-x2+2x.
    ①求曲线y=(x)与x轴所围成的平面图形面积S;
    ②求①的平面图形绕x轴旋转一周所得旋转体体积Vx.


    答案:
    解析:


  • 第4题:

    设D为曲线y=1-x2,直线y=x+1及x轴所围成的平面区域(如图1-3—1所示)·
    ①求平面图形的面积;
    ②求平面图形D绕x轴旋转一周所成旋转体的体积Vx.


    答案:
    解析:

  • 第5题:

    ①求曲线y=ex及直线x=1,x=0,y=0所围成的图形D的面积S:
    ②求平面图形D绕x轴旋转一周所成旋转体的体积Vx.


    答案:
    解析:
    画出平面图形如图l一3-7阴影所示.
    图1—3—6

    图1—3—7

  • 第6题:

    ①求在区间(0,π)上的曲线y=sinx与x轴所围成图形的面积S;
    ②求①中的平面图形绕x轴旋转一周所得旋转体的体积Vx.


    答案:
    解析:

  • 第7题:

    设直线L过A(1,0,0),B(0,1,1)两点,将L绕z轴旋转一周得到曲面∑,∑与平面z=0,z=2所围成的立体为Ω.
      (Ⅰ)求曲面∑的方程;
      (Ⅱ)求Ω的形心坐标.


    答案:
    解析:
    【分析】利用定义求旋转曲面∑的方程;利用三重积分求Ω的形心坐标.

  • 第8题:

    一条光线斜射在一水平放置的平面镜上,入射角为2π/6,请建立空间直角坐标系,并求出反射光线的方程。若将反射光线绕平面镜的法线旋转一周,求所得的旋转曲面的方程。


    答案:
    解析:
    以此光线与平面的交点为原点建立空间直角坐标系,如下图:

  • 第9题:

    将平面曲线y=x2分别绕y轴和x轴旋转一周,所得旋转曲面分别记作S1和S2。
    (1)在空间直角坐标系中,分别写出曲面S1和S2的方程;
    (2)求平面y=4与曲面S1。所围成的立体的体积。


    答案:
    解析:
    (1)在空间直角坐标系中,

  • 第10题:

    将双曲线,绕x轴旋转一周所生成的旋转曲面的方程是( )。


    答案:B
    解析:

  • 第11题:

    设D为曲线y=x2与直线y=x所围成的有界平面图形,求D绕x轴旋转一周所得旋转体的体积V.?


    答案:
    解析:

  • 第12题:

    (1)求曲线Y=ex及直线x=1,x=0,y=0所围成的平面图形(如图3—3所示)
    的面积A.
    (2)求(1)中平面图形绕x轴旋转一周所得旋转体的体积Vx.


    答案:
    解析:

  • 第13题:

    直线与y=H及y轴所围图形绕y轴旋转一周所得旋转体的体积为:(H,R为任意常数)


    答案:A
    解析:
    体积:

  • 第14题:

    设曲线y=4-x2(x≥0)与x轴,y轴及直线x=4所围成的平面图形为D(如
    图1—3—2中阴影部分所示).

    图1—3—1

    图1—3—2
    ①求D的面积S;
    ②求图中x轴上方的阴影部分绕y轴旋转一周所得旋转体的体积Vy.


    答案:
    解析:

  • 第15题:

    ①求由曲线y=x,y=1/x,x=2与y=0所围成的平面图形的面积S;
    ②求①中的平面图形绕x轴旋转一周所得旋转体的体积V.


    答案:
    解析:
    ①如图1—3-6所示,由已知条件可得

  • 第16题:


    (1)求D的面积S;
    (2)求D绕y轴旋转一周所得旋转体的体积V.


    答案:
    解析:

  • 第17题:

    求曲线y=x2与直线y=0,x=1所围成的平面图形绕x轴旋转一周所得旋转体的体积.


    答案:
    解析:

  • 第18题:

    设非负函数满足微分方程,当曲线过原点时,其与直线x=1及y=0围成平面区域D的面积为2,求D绕y轴旋转所得旋转体的体积


    答案:
    解析:

  • 第19题:

    (1)求直线y=1,曲线L以及y轴围成的平面图形绕y轴旋转一周所得到的的旋转体体积A;(2)假定曲线L绕y轴旋转一周所得到的旋转曲面为S。该旋转曲面作为容器盛满水(水的质量密度(单位体积水的重力)等于1),如果将其中的水抽完,求外力作功W.


    答案:
    解析:

  • 第20题:

    一条光线斜射在一水平放置的平面镜上,入射角为

    请建立空间直角坐标系,并求出反射光线的方程;若将反射光线绕平面镜的法线旋转一周,求所得旋转曲面的方程。


    答案:
    解析:
    本题主要考查空间曲面与方程的基础知识。

    首先建立直角坐标系,写出入射光线的直线方程,根据反射光线与入射光线关于轴对称,得出反射光线的方程;然后将反射光线绕Z轴旋转一周,即可得出旋转曲面即圆锥面的方程。

  • 第21题:


    x轴旋转一周,所成旋转曲面记作S。
    (1)在空间直角坐标系下,写出曲面S的方程;
    (2)求曲面S与平面x=0所围成立体的体积。


    答案:
    解析:

  • 第22题:

    设曲线及x=0所围成的平面图形为D.
    (1)求平面图形D的面积s.
    (2)求平面图形D绕y轴旋转一周生成的旋转体体积V


    答案:
    解析:
    平面图形D如图3-2所示.
    (1)




    (2)

  • 第23题:



    (1)求曲线y=f(x);
    (2)求由曲线y=f(x),y=0,x=1所围图形绕x轴旋转一周所得旋转体体积.


    答案:
    解析: