更多“对于方程组来说,变量数等于方程数时,方程组具有唯一解。() ”相关问题
  • 第1题:

    非齐次线性方程组AX=b中未知数个数为n,方程个数为m,系数矩阵A的秩为r,则( ).《》( )

    A.r=m时,方程组AX=b有解
    B.r=n时,方程组AX=b有唯一解
    C.m=m时,方程组AX=b有唯一解
    D.r<n时,方程组AX=b有无穷多解

    答案:A
    解析:

  • 第2题:

    非齐次线性方程组Ax=b中未知数的个数是n,方程的个数是m,系数矩阵A的秩是r,则() A.当r=m时,方程组Ax=b有解; B.当r=n时,方程组Ax=b有唯一解; C.当m=n时,方程组Ax=b有唯一解; D.当r<n时,方程组Ax=b有无穷多解;

    A.当r=m时,方程组Ax=b有解; 根据今天讲的第二个结论,当r=m时,方程组有解。

    B.当r=n时,没有说明在有解的情况

    C.当m=n时,方程组Ax=b有唯一解;

    D.当r<n时,方程组Ax=b有无穷多解;


    AX=0 必有非零解

  • 第3题:

    3、下列命题错误的是() A.若线性方程组系数行列式不等于零,则该方程组有唯一解 B.若线性方程组系数行列式不等于零,则该方程组无解 C.若齐次线性方程组系数行列式等于零,则该方程组有非零解 D.若齐次线性方程组系数行列式不等于零,则该方程组只有零解


    命题(1)是错误的反例:取向量 则向量组a 1 a 2 a 3 线性相关因它含有零向量.但a 1 并不能由a 2 a 3 线性表示因为a 2 a 3 的任何的线性组合所得向量的第一个分量是零.命题(2)是错误的反例:取 再取λ 1 =λ 2 =1则有λ 1 a 1 +λ 2 a 2 +λ 1 b 1 +λ 2 b 2 =0成立但a 1 a 2 线性无关;b 1 b 2 也线性无关.命题(3)是错误的反例:取 此时若有λ 1 a 1 +λ 2 a 2 +λ 1 b 1 +λ 2 b 2 = 成立只有λ 1 =λ 2 =0但向量组a 1 a 2 和向量组b 1 b 2 都线性相关.命题(4)是错误的反例:取 则向量组a 1 a 2 和向量组b 1 b 2 均线性相关.但对此两向量组不存在不全为零的数λ 1 λ 2 使λ 1 a 1 +λ 2 a 2 =0和λ 1 b 1 +λ 2 b 2 =0同时成立因由上面第一式可得 于是λ 2 =0同理由第二式得λ 1 =0. 命题(1)是错误的,反例:取向量则向量组a1,a2,a3线性相关,因它含有零向量.但a1并不能由a2,a3线性表示,因为a2,a3的任何的线性组合所得向量的第一个分量是零.命题(2)是错误的,反例:取再取λ1=λ2=1,则有λ1a1+λ2a2+λ1b1+λ2b2=0成立,但a1,a2线性无关;b1,b2也线性无关.命题(3)是错误的,反例:取此时若有λ1a1+λ2a2+λ1b1+λ2b2=成立,只有λ1=λ2=0,但向量组a1,a2和向量组b1,b2都线性相关.命题(4)是错误的,反例:取则向量组a1,a2和向量组b1,b2均线性相关.但对此两向量组不存在不全为零的数λ1,λ2使λ1a1+λ2a2=0和λ1b1+λ2b2=0同时成立,因由上面第一式可得于是λ2=0,同理由第二式得λ1=0.

  • 第4题:

    当线性方程组的系数行列式不为零时,方程组必有唯一解.


    正确

  • 第5题:

    5、若齐次线性方程组系数矩阵的列数大于行数,则该方程组有非零解.


    有无穷解