非齐次线性方程组Ax=b中未知量个数为n,方程个数为m,系数矩阵A的秩为r,则A.r=m时,方程组A-6有解. B.r=n时,方程组Ax=b有唯一解. C.m=n时,方程组Ax=b有唯一解. D.r

题目
参考答案和解析
答案:A
解析:
因为A是m×n矩阵,若秩r(A)=m,则m=r(A)≤r(A,b)≤m.于是r(A)=r(A,b).故方程组有解,即应选(A).或,由r(A)=m,知A的行向量组线性无关,那么其延伸必线性无关,故增广矩阵(A,b)的m个行向量也是线性无关的,亦知r(A)=r(A,b).关于(B)、(D)不正确的原因是:由r(A)=n不能推导出r(A,b)=n(注意A是m×n矩阵,m可能大于n),由r(A)=r亦不能推导出r(A,b)=r,你能否各举一个简单的例子?至于(C),由克拉默法则,r(A)=n时才有唯一解,而现在的条件是r(A)=r,因此(C)不正确,
更多“非齐次线性方程组Ax=b中未知量个数为n,方程个数为m,系数矩阵A的秩为r,则”相关问题
  • 第1题:

    对于有5个变量的齐次线性方程组AX=0,系数矩阵的秩r(A)=3,则其基础解析中向量个数为()。

    A.2

    B.5

    C.3

    D.1


    正确答案:A

  • 第2题:

    若非齐次线性方程组AX=b中,方程的个数少于未知量的个数,则下列结论中正确的是:

    A.AX=0仅有零解
    B.AX=0必有非零解
    C.AX=0—定无解
    D.AX=b必有无穷多解

    答案:B
    解析:
    提示:Ax=0必有非零解。
    ∵在解方程Ax=0时,对系数进行的初等变换,必有一非零的r阶子式,而未知数的个数 n,n>r, 基础解系的向量个数为n-r, ∴必有非零解。

  • 第3题:

    若A是m×n矩阵,且m≠n,则当R(A)=n时,非齐次线性方程组AX=b,有唯一解


    答案:错
    解析:

  • 第4题:

    设有齐次线性方程组Ax=0和Bx=0,其中A,B均m×n矩阵,现有4个命题:
      ①若Ax=0的解均是Bx=0的解,则秩(A)≥秩(B);
      ②若秩(A)≥秩(B),则Ax=0的解均是Bx=0的解;
      ③若Ax=0与Bx=0同解,则秩(A)=秩(B);

      ④若秩(A)=秩(B)则Ax=0与Bx=0同解;

      以上命题中正确的是

    A.①②.
    B.①③.
    C.②④.
    D.③④,

    答案:B
    解析:
    显然命题④错误,因此排除(C)、(D).对于(A)与(B)其中必有一个正确,因此命题①必正确,那么②与③哪一个命题正确呢?由命题①,“若Ax=0的解均是Bx=0的解,则秩(A)≥秩(B)”正确,知“若Bx=0的解均是Ax=0的解,则秩(B)≥秩(A)”正确,可见“若Ax=0与Bx=0同解,则秩(A)=秩(B)”正确.即命题③正确,故应选(B).

  • 第5题:

    非齐次线性方程组Ax=B中未知变量的个数为n,方程的个数为m,系数矩阵A的秩为r,则下列说法正确的是( )。


    答案:D
    解析:
    非齐次方程组解的判定需要验证r(A)是否等于r(A,b),A,B,C都无法判断。D项:r=m时,r(A)=r(A,b)=m,方程组必有解.

  • 第6题:

    设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)=r(A)=r

    答案:
    解析:

  • 第7题:

    若非齐次线性方程组中,方程的个数少于未知量的个数,则下列结论中正确的是:

    A.AX=0仅有零解
    B.AX=0必有非零解
    C.AX=0 —定无解
    D.AX=b必有无穷多解

    答案:B
    解析:
    提示Ax=0必有非零解。
    解方程Ax=0时,对系数矩阵进行行的初等变换,必有一非零的r阶子式,而未知数的个数n,n>r,基础解系的向量个数为n-r,所以必有非零解。

  • 第8题:

    设A为矩阵,都是齐次线性方程组Ax=0的解,则矩阵A为( )。



    答案:D
    解析:
    提示:由于线性无关,故R(A)= 1,显然选项A中矩阵秩为3,选项B和C中矩阵秩都为2。

  • 第9题:

    若非齐次线性方程组Ax=b中方程个数少于未知量个数,则下列结论中正确的是()。

    • A、Ax=0仅有零解
    • B、Ax=0必有非零解
    • C、Ax=0一定无解
    • D、Ax=b必有无穷多解

    正确答案:B

  • 第10题:

    单选题
    若非齐次线性方程组Ax=b中,方程的个数少于未知量的个数,则下列结论中正确的是(  )。[2013年真题]
    A

    Ax=0仅有零解

    B

    Ax=0必有非零解

    C

    Ax=0一定无解

    D

    Ax=b必有无穷多解


    正确答案: A
    解析:
    因非齐次线性方程组未知量个数大于方程个数,可知系数矩阵各列向量必线性相关,则对应的齐次线性方程组必有非零解。

  • 第11题:

    单选题
    设矩阵Am×n的秩r(A)=m<n,Em为m阶单位矩阵,下述结论正确的是(  )。
    A

    A的任意m个列向量必线性无关

    B

    A的任一个m阶子式不等于0

    C

    非齐次线性方程组AX()b()一定有无穷多组解

    D

    A通过行初等变换可化为(Em,0)


    正确答案: C
    解析:
    A项和B项,因r(A)=m,则A有m个列向量线性无关或A有m阶子式不为0,但不是任意的;C项,由r(A)=m<n,知方程组AX()b()中有n-m个自由未知数,故其有无穷多解;D项,矩阵A仅仅通过初等行变换是不能变换为矩阵(Em,0)的。

  • 第12题:

    单选题
    若非齐次线性方程组Ax=b中方程个数少于未知量个数,则下列结论中正确的是()。
    A

    Ax=0仅有零解

    B

    Ax=0必有非零解

    C

    Ax=0一定无解

    D

    Ax=b必有无穷多解


    正确答案: A
    解析: 暂无解析

  • 第13题:

    若A是m×n矩阵,且m≠n,则当R(A)=n时,齐次线性方程组AX=0只有零解


    答案:对
    解析:

  • 第14题:

    若A是m×n矩阵,且m≠n,则当R(A)=m时,非齐次线性方程组AX=b,有解


    答案:对
    解析:

  • 第15题:

    设A为m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r1,矩阵B=AC的秩为r,则



    答案:C
    解析:

  • 第16题:

    设n元齐次线性方程组Ax=0的系数矩阵A的秩为r,则Ax=0有非零解的充要条件为( )。

    A.r=n
    B.r<n
    C.r≥n
    D.r>n

    答案:B
    解析:
    Ax=0有非零解的充要条件为|A|=0,即矩阵A不是满秩的,r<n。

  • 第17题:

    非齐线性方程组AX=b中未知量的个数为n,方程的个数为m,系数矩阵A的秩为r,则( )。

    A 当r=m时,方程组AX=b有解
    B 当r=n时,方程组AX=b有惟一解
    C 当m=n时,方程组AX=b有惟一解
    D 当r<n时,方程组AX=b有无穷多解

    答案:A
    解析:
    系数矩阵A是m×n矩阵,增个矩阵B是m×(n+1)矩阵当R(A)=r=m时,由于R(B)≥R(A)=m,而B仅有m行,故有R(B)≤m,从而R(B)=m,即R(A)=R(B),方程组有解

  • 第18题:

    设A为m×n矩阵,B为n×m矩阵,E为m阶单位矩阵,若AB=E,则



    A.A秩r(A)=m,秩r(B)=m
    B.秩r(A)=m,秩r(B)=n
    C.秩r(A)=n,秩r(B)=m
    D.秩r(A)=n,秩r(B)=n

    答案:A
    解析:
    本题考的是矩阵秩的概念和公式.因为AB=E是m阶单位矩阵,知r(AB)=m.又因r(AB)≤min(r(A),r(B)),故m≤r(A),m≤r(B). ①另一方面,A是m×n矩阵,B是n×m矩阵,又有r(A)≤m,r(B)≤m. ②比较①、②得r(A)=m,r(B)=m.所以选(A)

  • 第19题:

    若非齐次线性方程组Ax=b中方程个数少于未知量个数,那么( )。
    A. Ax = b必有无穷多解 B.Ax=0必有非零解C.Ax=0仅有零解 D. Ax= 0一定无解


    答案:B
    解析:
    提示:A的秩小于未知量个数。

  • 第20题:

    非齐次线性方程组AX=b中未知数个数为n,方程个数为m,系数矩阵A的秩为r,则( ).

    A.r=m时,方程组AX=b有解
    B.r=n时,方程组AX=b有唯一解
    C.m=m时,方程组AX=b有唯一解
    D.r<n时,方程组AX=b有无穷多解

    答案:A
    解析:

  • 第21题:

    填空题
    设n阶矩阵A的各行元素之和均为零,且A的秩为n-1,则线性方程组AX=O的通解为____.

    正确答案: X=k(1,1…,1)T
    解析:
    由r(A)=n-1,知方程组AX=0的基础解系只含有n-(n-1)=1个解向量.又矩阵A的各行元素之和为0,知(1,1,…,1)T,为AX=0的非零解,则方程组AX=0的通解为X=k(1,1…,1)T

  • 第22题:

    单选题
    非齐次线性方程组AX(→)=b(→)中未知数个数为n,方程个数为m,系数矩阵A的秩为r,则(  )。
    A

    r=m时,方程组AX()b()有解

    B

    r=n时,方程组AX()b()有唯一解

    C

    m=n时,方程组AX()b()有唯一解

    D

    r<n时,方程组AX()b()有无穷多解


    正确答案: A
    解析:
    A项,由于r=m,则方程组AX()b()的增广矩阵化为阶梯形矩阵时,阶梯形矩阵不为0的行数为m,r(A)=r(A(_))=m,所以AX()b()有解;
    B项,当r=n时,可知n≤m,当n<m时,则方程组AX()b()不一定只有唯一解;
    C项,当m=n时,r(A(_))不一定等于r,方程组不一定有解;
    D项,当r<n时,不能保证r(A)=r(A(_))=r,方程组AX()b()不一定有解。

  • 第23题:

    单选题
    (2013)若非齐次线性方程组AX=b中,方程的个数少于未知量的个数,则下列结论中正确的是:()
    A

    AX=0仅有零解

    B

    AX=0必有非零解

    C

    AX=0一定无解

    D

    AX=b必有无穷多解


    正确答案: B
    解析: 暂无解析