已知,P为三阶非零矩阵,且满足PQ=O,则A.t=6时P的秩必为1 B.t-6时P的秩必为2 C.t≠6时P的秩必为1 D.t≠6时P的秩必为2

题目
已知,P为三阶非零矩阵,且满足PQ=O,则

A.t=6时P的秩必为1
B.t-6时P的秩必为2
C.t≠6时P的秩必为1
D.t≠6时P的秩必为2

相似考题
更多“已知,P为三阶非零矩阵,且满足PQ=O,则”相关问题
  • 第1题:

    已知n阶非零方阵A,B满足条件AB=O,则下列结论正确的是( )。


    答案:A
    解析:
    由于A,B为方阵,故AB=O两边同取行列式为|A||B|=0,故|A|=0或|B|=0,选A。

  • 第2题:

    设A是三阶矩阵,且|A|=4,则=_______.


    答案:1、2
    解析:

  • 第3题:

    设矩阵是4阶非零矩阵, 且满足证明矩阵B的秩


    答案:
    解析:

  • 第4题:

    设A是三阶矩阵,已知 ,B与A相似,则B的相似对角形为


    答案:
    解析:

  • 第5题:

    设A为三阶矩阵,且|A|=4,则=_______.


    答案:
    解析:

  • 第6题:

    设A=图},B≠0为三阶矩阵,且BA=0,则r(B)=_______.{


    答案:1、1
    解析:
    BA=0r(A)+r(B)≤3,因为r(A)≥2,所以r(B)≤1,又因为B≠0,所以r(B)=1.

  • 第7题:

    设A是三阶实对称矩阵,r(A)=1,A^2-3A=O,设(1,1,-1)t为A的非零特征值对应的特征向量.(1)求A的特征值;(2)求矩阵A.


    答案:
    解析:

  • 第8题:

    已知矩阵,且矩阵X满足.求X.


    答案:
    解析:

  • 第9题:

    设B≠O为三阶矩阵,且矩阵B的每个列向量为方程组的解,则k=_______,|B|=_______.


    答案:1、0
    解析:
    ,因为B的列向量为方程组的解且B≠0,所以AB=0且方程组有非零解,故|A|=0,解得k=1.因为AB=O,所以r(A)+r(B)≤3且r(A)≥1,于是r(B)≤2小于3,故|B|=0.

  • 第10题:

    设A,B为三阶矩阵且A不可逆,又AB+2B=O 且r(B)=2,则 |A+4E|=

    A.8
    B.16
    C.2
    D.0

    答案:B
    解析:

  • 第11题:

    设B是三阶非零矩阵,已知B的每一列都是方程组的解,则t等于

    A.0
    B.2
    C.1
    D.-1

    答案:D
    解析:
    提示:已知条件B是三阶非零矩阵,而B的每一列都是方程组的解,可知齐次方程Ax=0有非零解。所以齐次方程组的系数行列式为0,式,t=1。

  • 第12题:

    填空题
    设,B为三阶非零矩阵,且AB=0,则t=____。

    正确答案: -3
    解析:
    由B是三阶非零矩阵,且AB=0,知B的列向量是方程组AB=0的解且为非零解,故|A|=0,解得t=-3。

  • 第13题:

    设B是三阶非零矩阵,已知B的每一列都是方程组 的解,则t等于
    A.0 B.2 C.1 D.-1


    答案:D
    解析:
    提示:已知条件B是三阶非零矩阵,而B的每一列都是方程组的解,可知齐次方程Ax=0有非零解。所以齐次方程组的系数行列式为0,

  • 第14题:

    已知矩阵.,且矩阵X满足AXA+BXB=AXB+BXA+E,其中E是三阶单位矩阵,求X.


    答案:
    解析:
    【解】化简矩阵方程,有AX(A-B)+BX(B-A)=E,即(A-B)X(A-B)=E.
    由于,所以矩阵A-B可逆,且于是.

  • 第15题:

    设A=,B为三阶非零矩阵,且AB=O,则r(A)=_______.


    答案:1、2
    解析:
    因为AB=0,所以r(A)+r(B)≤3,又因为B≠0,所以r(B)≥1,从而有r(A)≤2,显然A有两行不成比例,故r(A)≥2,于是r(A)=2.

  • 第16题:

    设A为n阶非零矩阵,且存在自然数k,使得A^k=O.证明:A不可以对角化.


    答案:
    解析:

  • 第17题:

    若矩阵A=,B是三阶非零矩阵,满足AB=O,则t=_______.


    答案:1、1
    解析:
    由AB=0得r(A)+r(B)≤3,因为r(B)≥1,所以r(A)≤2,又因为矩阵A有两行不成比例,所以r(A)≥2,于是r(A)=2.
      由得t=1.

  • 第18题:

    ,B为三阶非零矩阵,且AB=0,则t=________.


    答案:1、-3.
    解析:
    由AB=0,对B按列分块有AB=A(β1,β2,β3)=(Aβ1,Aβ2,Aβ3)=(0,0,0),即β1,β2,β3是齐次方程组Ax=0的解,又因B≠0,故Ax=0有非零解,那么若熟悉公式:AB=0,则r(A)+r(B)≤n.可知r(A)<3.亦可求出t=-3.
    【评注】对于AB=O要有B的每个列向量都是齐次方程组Ax=0的构思,还要有秩r(A)+r(B)≤n的知识.

  • 第19题:

    设A,B为三阶矩阵,且满足方程.若矩阵,求矩阵B.


    答案:
    解析:

  • 第20题:

    设A=,且存在三阶非零矩阵B,使得AB=O,则a=_______,b=_______.


    答案:1、2 2、1
    解析:
    ,因为AB=O,所以r(A)+r(B)≤3,又B≠O,于是r(B)≥1,故r(A)≤2,从而a=2,b=1.

  • 第21题:

    已知a是常数,且矩阵可经初等列变换化为矩阵.
      (Ⅰ)求a;
      (Ⅱ)求满足AP=B的可逆矩阵P.


    答案:
    解析:

  • 第22题:

    都是n(n≥3)阶非零矩阵,且AB=O,则r(B)=( )

    A. 0
    B.1
    C. 2
    D. 3

    答案:B
    解析:

  • 第23题:

    设P为三阶方阵,将P的第一列与第二列交换得到T,再把T的第二列加到第三列得到 R.则满足PQ=R的矩阵Q是( )。


    答案:D
    解析: