图示质量为m,半径为r的定滑轮O上绕有细绳,依靠摩擦使绳在轮上不打滑,并带动滑轮转动。绳之两端均系质量m的物块A与B。块B放置的光滑斜面倾角为a,0

题目
图示质量为m,半径为r的定滑轮O上绕有细绳,依靠摩擦使绳在轮上不打滑,并带动滑轮转动。绳之两端均系质量m的物块A与B。块B放置的光滑斜面倾角为a,0


相似考题
参考答案和解析
答案:B
解析:
在右侧物重力作用下,滑轮顺时针方向转动,故轮上作用的合力矩应有
答案:B
更多“图示质量为m,半径为r的定滑轮O上绕有细绳,依靠摩擦使绳在轮上不打滑,并带动滑轮转动。绳之两端均系质量m的物块A与B。块B放置的光滑斜面倾角为a,0 ”相关问题
  • 第1题:

    如图所示,两重物M1和M2的质量分别为m1和m2,两重物系在不计质量的软绳上,绳绕过勻质定滑轮,滑轮半径为r,质量为m,则此滑轮系统对转轴O之动量矩为:



    答案:C
    解析:
    根据动量矩定义和公式:Lo=Mo(m1v)+Mo(m2v)+Jo轮ω

  • 第2题:

    图示质量为m,半径为r的定滑轮O上绕有细绳,依靠摩擦使绳在轮上不打滑,并带动滑轮转动。绳之两端均系质量m的物块A与B。块B放置的光滑斜面倾斜角为α,0T1和FT2的大小有关系:

    A. FT1= FT2 B.FT1T2 C. FT1>FT2 D.只依据已知条件则不能确定


    答案:B
    解析:
    提示:根据动量矩定理求力。

  • 第3题:

    图示均质圆轮,质量m,半径R,由挂在绳上的重为W的物块使其绕质心轴O转动。设重物的速度为v,不计绳重,则系统动量、动能的大小是(  )。




    答案:A
    解析:

  • 第4题:

    图示圆轮上绕一细绳,绳端悬挂物块。物块的速度v、加速度a。圆轮与绳的直线段相 切之点为P,该点速度与加速度的大小分别为:



    答案:A
    解析:
    定轴转动刚体上P点与绳直线段的速度和切向加速度相同,而P点还有法向加速度。
    答案:A

  • 第5题:

    质量为m,半径为r 的定滑轮O 上绕有细绳。依靠摩擦使绳在轮上不打滑,并带动滑轮转动。绳之两端均系质量m 的物块A 与B。块B放置的光滑斜面倾角为α ,假定定滑轮O 的轴承光滑,当系统在两物块的重力作用下开始运动时,B与O间,A 与O
    间的绳力FT1和FT2的大小有关系:

    (A) FT1=FT2
    (B) FT1 T2
    (C) FT1 >FT2
    (D)只根据已知条件不能确定


    答案:B
    解析:
    解:选B。
    此题的关键处在于:绳在滑轮上是有摩擦的,因此FT1 =FT2
    因为在重力作用下,物块 A 向下运动,列受力表达式(两物块加速度大小和速度大小均相同)可得,FT1 T2。

  • 第6题:

    两重物的质量均为m,分别系在两软绳上,此两绳又分别绕在半径各为r与2r并固结一起的两圆轮上,两圆轮构成之鼓轮的质量亦为m,对轴O的回转半径为p0,两重物中一铅垂悬挂,一置于光滑平面上,当系统在左重物重力作用下运动时,鼓轮的角加速度a为:



    答案:A
    解析:
    均匀细直杆对一端的转动惯量:
    均匀细直杆对垂直与杆的中心轴的转动惯量:
    匀质圆板对垂直于板的中心轴的转动惯量:
    惯性半径:
    作受力分析,下降的重物:mg-T1=ma1,水平方向上的重物T2=ma2;
    又 a1 = 2ar, a2 = ar。再根据动量矩定理,联列以上方程得选项(A)。

  • 第7题:

    如图半径为R的滑轮上绕一绳子,绳与轮间无相对滑动。绳子一端挂一物块,在图示位置物块有速度和加速度。M点为滑轮上与铅垂绳段的相切点,则在此瞬时M点加速度的大小为(  )。



    答案:C
    解析:

  • 第8题:

    如图8-2所示,物块A放在水平的光滑桌面上,用细绳的一端系住A绳穿过小孔O,另一端系物块B.当A在桌面上以角速度ω=5 rad/s绕O做匀速圆周运动时,绳被拉紧,B静止才动.已知A的质量mA=1 kg,A离O的距离为1 m,则B的质量等于(  )(取g=10 m/s2)


    A.2.5 kg
    B.2 kg
    C.1.5 kg
    D.0.5 kg

    答案:A
    解析:
    本试题考查的知识点是牛顿定律和圆周运动的向心力. A、B用一根细线系在两端,当细线拉紧时,线上各点的张力相等.A受细线拉力FA作用,B受重力G和细线拉力FB的作用,A的重力和桌面的支持力抵消,不予考虑.FA=FB=F.A做匀速圆周运动,它的向心力就是细线拉力F.B静止不动.
    对A、B写出牛顿方程有

  • 第9题:

    确定物体绕某个轴的转动惯量,可以由理论计算也可通过实验测定。
    (1)用积分计算质量为m,半径为R的均质薄圆盘绕其中心轴的转动惯量。
    (2)该圆盘质量未知,可用如图9所示的实验方法测得该圆盘绕中心轴的转动惯量。在圆盘的边缘绕有质量不计的细绳,绳的下端挂一质量为m的重物,圆盘与转轴间的摩擦忽略不计。测得重物下落的加速度为a,求圆盘绕其中心轴的转动惯量。


    答案:
    解析:

  • 第10题:

    如图4-63所示,两重物m1和m2的质量分别为m1和m2,两重物系在不计质量的软绳上,绳绕过均质定滑轮,滑轮半径为r,质量为M,则此滑轮系统对转轴O之动量矩为()。



    答案:C
    解析:
    提示:根据动量矩定义和公式

  • 第11题:

    半径为R具有光滑轴的定滑轮边缘绕一细绳,绳的下端挂一质量为m的物体绳的质量可以忽略,绳与定滑轮之间无相对滑动若物体下落的加速度为a,则定滑轮对轴的转动惯量J=()。


    正确答案:m(g-a)R2/a

  • 第12题:

    单选题
    质量为2m,半径为R的偏心圆板可绕通过中心O的轴转动,偏心距OC= 。在OC连线上的A点固结一质量为m的质点,OA=R如图示。当板以角速度w绕轴O转动时,系统动量K的大小为()。(注:C为圆板的质心)。
    A

    K=0

    B

    K=mRw

    C

    K=mRw

    D

    K=2mRw


    正确答案: A
    解析: 暂无解析

  • 第13题:

    均质圆盘质量为m,半径为R,在铅垂平面内绕O轴转动,图示瞬时角速度为ω,则其对O轴的动量矩和动能大小分别为:



    答案:D
    解析:

  • 第14题:

    圆轮上绕一细绳,绳端悬挂物块,物块的速度为v、加速度a,圆轮与物块的直线段相切之点为P,该点速度与加速度的大小分别为:

    (A)vp=v,ap>a
    (B)vp>v,ap<a
    (C)vp=v,ap<a
    (D)vp>v,ap>a


    答案:A
    解析:
    速度肯定是和物块速度保持一致,加速度的大小是大于物块的。

  • 第15题:

    两重物的质量均为m,分别系在两软绳上。此两绳又分别绕在半径各为r与2r并固结在一起的两轮上。两圆轮构成之鼓轮的质量亦为m,对轴O的回转半径为ρO。两重物中一铅垂悬挂,一置于光滑平面上。当系统在左重物重力作用下运动时,鼓轮的角加速度α为:



    答案:A
    解析:

  • 第16题:

    圆轮上绕一细绳,绳端悬挂物块。物块的速度v、加速度a。圆轮与绳的直线段相切之点为P,该点速度与加速度的大小分别为:

    A. vp = v,ap>a B. vp>v,apC. vp =v,app>v,ap>a


    答案:A
    解析:
    提示:定轴转动刚体上P点与绳直线段的速度和切向加速度相同,而P点还有法向加速度。

  • 第17题:

    各重为P的两物块A和B用绳连接并将此绳缠绕在均质滑轮O上,如图所示,如滑轮半径为R,重为Q,角速度为ω,则系统对O轮的动量矩为(  )。


    答案:C
    解析:
    系统对O轮的动量矩为物体A、B以及滑轮对O的动量矩的矢量和,因三个动量矩均为逆时针方向,因此,

  • 第18题:

    如图所示,两重物M1和M2的质量分别为m1和m2,两重物系在不计重量的软绳上,绳绕过均质定滑轮,滑轮半径r,质量为M,则此滑轮系统的动量为:



    答案:B
    解析:
    提示:根据动量的定义p=∑mivi。

  • 第19题:

    图示鼓轮半径r=3.65m,对转轴O的转动惯量JO= 0.92kg ? m2;绕在鼓轮上的绳端挂有质量m=30kg的物体A。不计系统质量与摩擦,欲使鼓轮以角加速度α=37.8rad/s2转动来提升重物,需对鼓轮作用的转矩M的大小是:

    A. 37.8N ? m B. 47N ? m
    C. 36.3N ? m D. 45.5N ? m


    答案:B
    解析:
    提示:动量矩定理(JO +mr2 )α=M-mgr。

  • 第20题:

    如图所示的装置中,物块A、B、C的质量分别为M、m和mo,物块曰放置在物块A上,物块A用不可伸长的轻绳通过滑轮与物块C连接,绳与滑轮之间的摩擦不计。若日随A一起沿水平桌面做匀速运动,则可以断定(重力加速度为9)(  )。



    A.物块A与桌面之间有摩擦力,大小为,mog

    B.物块A与B之间有摩擦力.大小为mog

    C.桌面与A之间,B与A之间,都有摩擦力,两者方向相同,它们的合力为mog

    D.桌面与A之间,B与A之间,都有摩擦力,两者方向相反,它们的合力为meg

    答案:A
    解析:
    对B分析,B受重力、支持力,因B水平方向不受外力,故B不会受到A对B的摩擦力,故AB间没有摩擦力,BCD均错误;对AB整体受力分析可知,整体受绳的拉力、重力、支持力,要使整体做匀速直线运动,A应受到地面对其向左的摩擦力,大小与绳子的拉力相同;对C分析,可知C受重力与绳子的拉力而处于匀速运动状态,故绳子的拉力为mog;由此可知,物体A与桌面间的摩擦力大小为mog;故A正确。

  • 第21题:

    如图所示,两重物M1和M2的质量分别为m1和m2,两重物系在不计重量的软绳上,绳绕过均质定滑轮,滑轮半径r,质量为M,则此滑轮系统对转轴O之动量矩为:



    答案:C
    解析:
    提示 根据动量矩定义和公式:LO= MO(m1v) + MO(m2v)+JO轮w。

  • 第22题:

    圆柱体定滑轮的质量为m,半径为R,绕其质心轴转动的角位移为θ=a+bt+ct2,a、b、c为常数,作用在定滑轮上的力矩为()

    • A、(1/2)maR2
    • B、bmR2
    • C、(1/2)mbR2
    • D、mcR2

    正确答案:D

  • 第23题:

    单选题
    图示鼓轮半径r=3.65m,对转轴O的转动惯量Jo=0.92kg·m 2;绕在鼓轮上的绳端挂有质量m=30kg的物体A。不计系统质量与摩擦,欲使鼓轮以角加速度α=37.8rad/s2转动来提升重物,需对鼓轮作用的转矩M的大小是:()
    A

    37.8N.m

    B

    47N.m

    C

    36.3N.m

    D

    45.5N.m


    正确答案: C
    解析: 暂无解析