已知n阶矩阵A的行列式|A|=0,那么矩阵A经过()后,其秩有可能改变。A.初等变换B.左乘初等矩阵C.右乘一个可逆矩阵D.与一个单位矩阵相加

题目

已知n阶矩阵A的行列式|A|=0,那么矩阵A经过()后,其秩有可能改变。

A.初等变换

B.左乘初等矩阵

C.右乘一个可逆矩阵

D.与一个单位矩阵相加


相似考题
更多“已知n阶矩阵A的行列式|A|=0,那么矩阵A经过()后,其秩有可能改变。”相关问题
  • 第1题:

    已知n阶可逆矩阵A的特征值为λ0,则矩阵(2A)-1的特征值是:


    答案:C
    解析:

  • 第2题:

    设矩阵是4阶非零矩阵, 且满足证明矩阵B的秩


    答案:
    解析:

  • 第3题:

    设n阶实对称矩阵A的秩为r,且满足,求 ①二次型的标准形; ②行列式的值,其中E为单位矩阵


    答案:
    解析:

  • 第4题:

    若n阶方阵A满足|A|=b(b≠0,n≥2),而A*是A的伴随矩阵,则行列式|A*|等于(  )。

    A.bn
    B.bn-1
    C.bn-2
    D.bn-3

    答案:B
    解析:

  • 第5题:

    4阶方阵A的秩为2,则其伴随矩阵An的秩为( )。

    A. 0 B. 1 C. 2 D. 3


    答案:A
    解析:
    提示:A所有三阶子式为零,故An是零矩阵。

  • 第6题:

    设3阶矩阵,已知A的伴随矩阵的秩为1,则a=()。

    • A、-2
    • B、-1
    • C、1
    • D、2

    正确答案:A

  • 第7题:

    问答题
    设A为4阶魔术矩阵,分别对A进行如下操作: 求矩阵A的逆; 求矩阵A的行列式; 求矩阵A的秩; 求矩阵A的迹;

    正确答案: >>A=magic(4)
    >>B=inv(A)
    >>C=det(A)
    >>D=rank(A)
    >>E=trace(A)
    解析: 暂无解析

  • 第8题:

    单选题
    设A是m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r,矩阵B=AC的秩为r1,则(  )。
    A

    r>r1

    B

    r<r1

    C

    r=r1

    D

    r与r1的关系依C而定


    正确答案: A
    解析:
    由r1=r(B)≤min[r(A),r(C)]=r(A)=r。
    且A=BC1,故r=r(BC1)≤min[r(B),r(C1)]=r(B)=r1,所以有r=r1

  • 第9题:

    单选题
    当n阶矩阵A的秩r(A)<n时,|A|=(  )。
    A

    n-1

    B

    n

    C

    1

    D

    0


    正确答案: C
    解析:
    由r(A)<n,知矩阵A不可逆,故|A|=0。

  • 第10题:

    单选题
    当n阶矩阵A的秩r(A)<n时,|A|=(  )。
    A

    0

    B

    1

    C

    n-1

    D

    n


    正确答案: A
    解析:
    由r(A)<n,知矩阵A不可逆,故|A|=0。

  • 第11题:

    单选题
    设3阶矩阵,已知A的伴随矩阵的秩为1,则a=()。
    A

    -2

    B

    -1

    C

    1

    D

    2


    正确答案: B
    解析: 暂无解析

  • 第12题:

    单选题
    下列结论中正确的是(    )
    A

    矩阵A的行秩与列秩可以不等

    B

    秩为r的矩阵中,所有r阶子式均不为零

    C

    若n阶方阵A的秩小于n,则该矩阵A的行列式必等于零

    D

    秩为r的矩阵中,不存在等于零的r-1阶子式


    正确答案: D
    解析:

  • 第13题:

    下列结论中正确的是(  )。

    A、 矩阵A的行秩与列秩可以不等
    B、 秩为r的矩阵中,所有r阶子式均不为零
    C、 若n阶方阵A的秩小于n,则该矩阵A的行列式必等于零
    D、 秩为r的矩阵中,不存在等于零的r-1阶子式

    答案:C
    解析:
    A项,矩阵A的行秩与列秩一定相等。B项,由矩阵秩的定义可知,若矩阵A(m×n)中至少有一个r阶子式不等于零,且r<min(m,n)时,A中所有的r+1阶子式全为零,则A的秩为r。即秩为r的矩阵中,至少有一个r阶子式不等于零,不必满足所有r阶子式均不为零。C项,矩阵A的行列式不等于零意味着矩阵A不满秩,n阶矩阵的秩为n时,所对应的行列式的值大于零;当n阶矩阵的秩<n时,所对应的行列式的值等于零。D项,秩为r的矩阵中,有可能存在等于零的r-1阶子式,如秩为2的矩阵



    中存在等于0的1阶子式。

  • 第14题:

    设A为m阶实对称矩阵且正定,B为m×n实矩阵,B^T为B的转置矩阵,试证:B^TAB为正定矩阵的充分必要条件是B的秩r(B)=n,


    答案:
    解析:

  • 第15题:

    设A为m×n矩阵,B为n×m矩阵,E为m阶单位矩阵,若AB=E,则



    A.A秩r(A)=m,秩r(B)=m
    B.秩r(A)=m,秩r(B)=n
    C.秩r(A)=n,秩r(B)=m
    D.秩r(A)=n,秩r(B)=n

    答案:A
    解析:
    本题考的是矩阵秩的概念和公式.因为AB=E是m阶单位矩阵,知r(AB)=m.又因r(AB)≤min(r(A),r(B)),故m≤r(A),m≤r(B). ①另一方面,A是m×n矩阵,B是n×m矩阵,又有r(A)≤m,r(B)≤m. ②比较①、②得r(A)=m,r(B)=m.所以选(A)

  • 第16题:

    设A是m阶矩阵,B是n阶矩阵,行列式等于( )。


    答案:D
    解析:

  • 第17题:

    设A为4阶魔术矩阵,分别对A进行如下操作: 求矩阵A的逆; 求矩阵A的行列式; 求矩阵A的秩; 求矩阵A的迹;


    正确答案: >>A=magic(4)
    >>B=inv(A)
    >>C=det(A)
    >>D=rank(A)
    >>E=trace(A)

  • 第18题:

    问答题
    已知A=(aij),B=(bij)为两个n阶方阵。  X为n阶方阵。证明:AX=B有解的充要条件是n+1个矩阵A,A1,A2,…,An的秩相等。

    正确答案:
    (1)必要性
    设AX=B有解,令X()1,X()2,…,X()n是X的列向量,B()1,B()2,…,B()n是B的列向量。由AX=B有解知方程组AX()k=B()k(k=1,2,…,n)有解,于是有r(A)=r(A┆B()k)=r(Ak)(k=1,2,…,n),即A,A1,A2,…,An的秩相等。
    (2)充分性
    若A,A1,A2,…,An的秩都相等,则方程组AX()k=B()k有解。记其解为C()i(i=1,2,…,n),则AC=B(其中C是以Ci为列向量的矩阵),即C为AX=B的解,故AX=B有解。
    解析: 暂无解析

  • 第19题:

    单选题
    若n阶方阵A满足|A|=b(b≠0,n≥2),而A*是A的伴随矩阵,则行列式|A*|等于(  )。[2019年真题]
    A

    bn

    B

    bn-1

    C

    bn-2

    D

    bn-3


    正确答案: B
    解析:
    伴随矩阵A*=|A|A-1,则|A*|=|A|n·|A-1|=|A|n·|A|-1=|A|n-1。又|A|=b,则|A*|=|A|n-1=bn-1

  • 第20题:

    单选题
    当n阶矩阵A的秩r(A)<n时,|A|=(  )。
    A

    0

    B

    1

    C

    2

    D

    4


    正确答案: D
    解析:
    由r(A)<n,知矩阵A不可逆,故|A|=0。

  • 第21题:

    单选题
    已知A为奇数阶实矩阵,设阶数为n,且对于任一n维列向量X,均有XTAX=0,则有(  )。
    A

    |A|>0

    B

    |A|=0

    C

    |A|<0

    D

    以上三种都有可能


    正确答案: D
    解析:
    由于对任一n维列向量X均有XTAX=0,两边转置,有XTATX=0,从而XT(A+AT)X=0。显然有(A+ATT=A+AT,即A+AT为对称矩阵。从而对任一n维列向量X均有:XT(A+AT)X=0,A+AT为实对称矩阵,从而有A+AT=0。即AT=-A,从而A为实反对称矩阵,且A为奇数阶,故|A|=0。

  • 第22题:

    单选题
    设A是m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r,矩阵B=AC的秩为r1,则(  )。
    A

    r>r1

    B

    r<rl

    C

    r=rl

    D

    r与r1的关系依C而定


    正确答案: A
    解析:
    由r1=r(B)≤min[r(A),r(C)]=r(A)=r。
    且A=BC1,故r=r(BC1)≤min[r(B),r(C1)]=r(B)=r1,所以有r=r1

  • 第23题:

    填空题
    当n阶矩阵A的秩r(A)<n时,|A|=____。

    正确答案: 0
    解析:
    由r(A)<n,知矩阵A不可逆,故|A|=0。

  • 第24题:

    填空题
    设n阶矩阵A的各行元素之和均为零,且A的秩为n-1,则线性方程组AX(→)=0(→)的通解为____。

    正确答案: X()=k(1,1,…,1)T
    解析:
    由r(A)=n-1,知方程组AX()0()的基础解系只含有n-(n-1)=1个解向量。又矩阵A的各行元素之和为0,知(1,1,…,1)T,为AX()0()的非零解,则方程组AX()0()的通解为X()=k(1,1,…,1)T