参考答案和解析
答案:A
解析:
更多“设A是一个n阶矩阵,那么是对称矩阵的是( ). ”相关问题
  • 第1题:

    节点导纳矩阵的特点有()。

    A、是n×n阶方阵

    B、是稀疏矩阵

    C、一般是对称矩阵

    D、其对角元一般小于非对角元


    正确答案:ABC

  • 第2题:

    设A为n阶可逆矩阵,则下面各式恒正确的是( ).


    答案:D
    解析:

  • 第3题:

    设n阶矩阵A与对角矩阵相似,则().

    A.A的n个特征值都是单值
    B.A是可逆矩阵
    C.A存在n个线性无关的特征向量
    D.A一定为n阶实对称矩阵

    答案:C
    解析:
    矩阵A与对角阵相似的充分必要条件是其有n个线性无关的特征向量,A有n个单特征值只是其可对角化的充分而非必要条件,同样A是实对称阵也是其可对角化的充分而非必要条件,A可逆既非其可对角化的充分条件,也非其可对角化的必要条件,选(C).

  • 第4题:

    设A为m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r1,矩阵B=AC的秩为r,则



    答案:C
    解析:

  • 第5题:

    设A是n阶正定矩阵,证明:|E+A|>1.


    答案:
    解析:

  • 第6题:

    设A为n阶对称矩阵,k为常数.试证kA仍为对称矩阵.


    答案:
    解析:

  • 第7题:

    设A为n阶非奇异矩阵,α为n维列向量,b为常数.记分块矩阵.其中A*是矩阵A的伴随矩阵,E是n阶单位矩阵. (1)计算并化简PQ; (2)证明:矩阵Q可逆的充分必要条件是.


    答案:
    解析:

  • 第8题:

    设A是n阶矩阵,E+A是可逆矩阵,记,若A按足条件,证明是反对称矩阵。


    答案:
    解析:


  • 第9题:

    设A为m阶正定矩阵,B为m×n阶实矩阵.证明:B^SAB正定的充分必要条件是r(B)=n,


    答案:
    解析:

  • 第10题:

    设A是m阶矩阵,B是n阶矩阵,行列式等于( )。


    答案:D
    解析:

  • 第11题:

    设A,B是n阶对称阵,Λ是对角阵,下列矩阵中不是对称阵的是().

    • A、A+2E
    • B、A+Λ
    • C、AB
    • D、A-B

    正确答案:C

  • 第12题:

    单选题
    设A,B是n阶对称阵,Λ是对角阵,下列矩阵中不是对称阵的是().
    A

    A+2E

    B

    A+Λ

    C

    AB

    D

    A-B


    正确答案: A
    解析: 暂无解析

  • 第13题:

    设A,B为,N阶实对称矩阵,则A与B合同的充分必要条件是().

    A.r(A)=r(B)
    B.|A|=|B|
    C.A~B
    D.A,B与同一个实对称矩阵合同

    答案:D
    解析:
    因为A,B与同一个实对称矩阵合同,则A,B合同.反之,若A,B合同,则A,B的正、负惯性指数相同,从而A,B与合同,选(D).

  • 第14题:

    设A,B为n阶对称矩阵,下列结论不正确的是().

    A.AB为对称矩阵
    B.设A,B可逆,则A^-1+B^-1为对称矩阵
    C.A+B为对称矩阵
    D.kA为对称矩阵

    答案:A
    解析:

  • 第15题:

    设N阶矩阵A与对角矩阵合同,则A是().

    A.可逆矩阵
    B.实对称矩阵
    C.正定矩阵
    D.正交矩阵

    答案:B
    解析:

  • 第16题:

    设A为n阶矩阵,下列结论正确的是().


    答案:D
    解析:

  • 第17题:

    设A,B都是N阶对称矩阵,证明AB是对称矩阵的充分必要条件是.AB=BA


    答案:
    解析:

  • 第18题:

    设A为m阶实对称矩阵且正定,B为m×n实矩阵,B^T为B的转置矩阵,试证:B^TAB为正定矩阵的充分必要条件是B的秩r(B)=n,


    答案:
    解析:

  • 第19题:

    证明;对任意的n阶矩阵A,为对称矩阵,而为反对称矩阵.


    答案:
    解析:

  • 第20题:

    设A是m×n阶矩阵,若A^TA=O,证明:A=0.


    答案:
    解析:
    【证明】因为r(A)=r(A^TA),而A^TA=O,所以r(A)=0,于是A=O.

  • 第21题:

    设A是m阶矩阵,B是n阶矩阵,
    A.- A B B. A B
    C. (-1)m+n A B D. (-1)mn

    A B

    答案:D
    解析:

  • 第22题:

    设A为n阶方阵,B是A经过若干次矩阵的初等变换后所得到的矩阵,则有( ).《》( )


    答案:C
    解析:

  • 第23题:

    问答题
    设n阶矩阵A有n个两两正交的特征向量,证明A是对称矩阵。

    正确答案:
    设A的n个两两正交的特征向量为α()1,α()2,…,α()n,其对应的特征值依次为λ12,…,λn
    ξ()i=α()i/,α()i,(i=1,2,…,n),则ξ()1,ξ()2,…,ξ()n是两两正交的单位向量。
    记P=(ξ()1,ξ()2,…,ξ()n),即P是正交矩阵。从而有P-1=PT,P-1AP=diag(λ12,…,λn)=Λ,即A=PΛP-1=PΛPT,故AT=(PΛPT)T=(PT)TΛTPT=PΛPT=A,即A是对称矩阵。
    解析: 暂无解析