参考答案和解析
参考答案:C
更多“设某生产函数为Q=4L+500,则() ”相关问题
  • 第1题:

    假定某厂商短期生产的边际成本函数为SMC(Q)=3Q2-8Q+100,且已知当产量Q=10时的总成本STC=2400,求相应的STC函数、SAC函数和AVC函数。


    参考答案:


    切入点:对总成本函数求导数,得到边际成本函数,反过来对边际成本函数积分,会得到总成本函数。本题给了SMC,积分后得到总成本函数,再根据给的其他条件确定固定成本的数值。最后几个函数就出来了。

  • 第2题:

    某企业生产一种产品,劳动为唯一可变要素,固定成本既定。短期生产函数Q=-0.1L3+6L22+12L,求: (1)劳动的平均产量函数和边际产量函数。 (2)企业雇用工人的合理范围是多少? (3)若已知劳动的价格为W=480,产品Q的价格为40,则当利润最大时,企业生产多少产品Q?
    (1)平均产量AP=TP/L= -0.1 L2 +6L+12 边际产量MP=(TP)’= - 0.3 L2+12L+12
    (2)企业应在平均产量递减,边际产量为正的生产阶段组织生产,因此雇用工人的数量也应在此范围<0,MP>0内。 对APL求导,得= - 0.2 L +6=0。 即L=30 
    当L=30时,APL取得最大值,L>30,APL开始递减。 令MPL= - 0.3L2+12L+12=0,得L=40.98
    所以,企业雇用工人的合理范围为30≤L≤41
    (3)利润π=PQ-WL=40(- 0.1 L3 +6L2 +12L)-480L = - 4 L3 +240L2 +480L-480L
    Π’=- 12L2+480L,当Π’=0时, L=0 (舍去) 或L=40.
    当L=40时, Π” <0,所以L=40,利润π最大。
    此时,产量Q= -0.1×403+6 × 402 +12 × 40 =3680

  • 第3题:

    某产品的需求函数为Q=450-5p,p为产品单价,总成本函数为 C=3000+10Q(元),则Q=150、Q=200时边际利润分别等于:


    利润函数为 L=pq-C=(d-eq)q-(aq 2 +bq+c) =(d-b)q+(e+a)q 2 -c 令 L'(q)=d-b-2(e+a)q=0 得 由问题实际意义知,当产量 时,利润最大, $由于 ,故需求对价格的弹性为 $令|y|=1得

  • 第4题:

    假定某厂商短期生产的平均成本函数为SAC(Q)=200/Q+6-2Q+2Q^2,求该厂商的边际成本函数。


    答案:
    解析:
    该厂商的总成本函数为: STC(Q) =200 +6Q _2Q2 +2Q3 该厂商的边际成本函数为: MC(Q) =6 -4Q +6Q2

  • 第5题:

    设某产品需要两种生产要素:A和B,其生产函数为:Q=4A9B.如果A、B价格相等,则企业应使用同量的A和B。()

    A

    B