司法考试前三卷都是选择题?
你好,是的,前三卷为选择题。
【题目描述】
这三个自然数分别是()
【参考答案分析】:
某考试卷中有若干选择题,每答对一题加2分,答错或不答一题扣1分,一考生答对的选择题数量是答错或不答的5倍,选择题共得到45分。问试卷中有多少道选择题?( )
A.50
B.30
C.25
D.20
有关填充材料的技术条件在asme的哪卷?()
下列哪些考试行为属于考生违纪:()
八年级数学第二学期第二十二章四边形章节练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,菱形ABCD中,BAD = 60,AB = 6,点E,F分别在边AB,AD上,将AEF沿EF翻折得到GEF,若点G恰好为CD边的中点,则AE的长为( )ABCD32、如图,已知在正方形ABCD中,厘米,点E在边AB上,且厘米,如果点P在线段BC上以2厘米/秒的速度由B点向C点运动,同时,点Q在线段CD上以a厘米/秒的速度由C点向D点运动,设运动时间为t秒若存在a与t的值,使与全等时,则t的值为( )A2B2或1.5C2.5D2.5或23、如图,在平面直角坐标系中,以坐标原点O为顶点的正方形OBCD,其中点D(2,0),点B在y轴上,点C在第一象限,以BC为边在正方形OBCD外作等边ABC,若将ABC与正方形OBCD组成的图形绕点O顺时针旋转,每次旋转90,则第2020次旋转结束时,点A的坐标为()A(1,2+)B(2+,1)C(1,2)D(2,1)4、如图,在平面直角坐标系中,矩形ABCO的两边OA,OC落在坐标轴上,反比例函数y的图象分别交BC,OB于点D,点E,且,若SAOE3,则k的值为( )A4BC8D25、如图,点在边长为的正方形的边上,将绕点顺时针旋转到的位置,连接,过点作的垂线,垂足为点,与交于点若,则的长为( )ABCD6、如图,过点O作直线与双曲线y(k0)交于A,B两点,过点B作BCx轴于点C,作BDy轴于点D在x轴、y轴上分别取点E,F,使点A,E,F在同一条直线上,且AEAF设图中矩形ODBC的面积为S1,EOF的面积为S2,则S1,S2的数量关系是()AS1S2B2S1S2C3S1S2D4S1S27、四边形的内角和与外角和的数量关系,正确的是()A内角和比外角和大180B外角和比内角和大180C内角和比外角和大360D内角和与外角和相等8、矩形ABCD的一条对角线长为6,边AB的长是方程的一个根,则矩形ABCD的面积为( )AB12CD或9、的周长为32cm,AB:BC=3:5,则AB、BC的长分别为( )A20cm,12cmB10cm,6cmC6cm,10cmD12cm,20cm10、下列正多边形中,能够铺满地面的是()A正方形B正五边形C正七边形D正九边形第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一个正多边形的每个外角都等于45,那么这个正多边形的内角和为_度2、若一个多边形的内角和是外角和的倍,则它的边数是_3、如图,ABC中,AC=BC=3,AB=2,将它沿AB翻折得到ABD,点P、E、F分别为线段AB、AD、DB上的动点,则PE+PF的最小值是_4、在平面直角坐标系中,已知反比例函数,有若干个正方形如图依次叠放,双曲线经过正方形的一个顶点(A1,A2,A3在反比例函数图象上),以此作图,我们可以建立了一个“凡尔赛阶梯”,那么A2的坐标为 _5、一个多边形的内角和为1080,则它是_边形三、解答题(5小题,每小题10分,共计50分)1、如图,四边形ABCD中,点E是AD的中点,连接BE,将ABE沿BE折叠后得到GBE,且点G在四边形ABCD内部,延长BG交DC于点F,连接EF(1)求证:四边形ABCD是矩形;(2)求证:;(3)若点,求DF的长2、如图1,在中,点,分别在边,上,连接,点在线段上,连接交于点(1)比较与的大小,并证明;若,求证:;(2)将图1中的绕点逆时针旋转,如图2若是的中点,判断是否仍然成立如果成立,请证明;如果不成立,请说明理由.3、如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG2OD,OE2OC,然后以OG、OE为邻边作正方形OEFG,连结AG、DE(1)猜想AG与DE的数量关系,请直接写出结论;(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转,旋转角为(0180),得到图2,请判断:(1)中的结论是否仍然成立?若成立,请证明;若不成立,请说明理由;(3)在正方形OEFG旋转过程中,请直接写出:当30时,OAG的度数;当AEG的面积最小时,旋转角的度数4、如图,点E为矩形ABCD外一点,AE = DE.求证:ABEDCE5、如图,在RtABC中,ACB90(1)作AB的垂直平分线l,交AB于点D,连接CD,分别作ADC,BDC的平分线,交AC,BC于点E,F(尺规作图,不写作法,保作图痕迹);(2)求证:四边形CEDF是矩形-参考答案-一、单选题1、B【分析】过点D作,垂足为点H,连接BD和BG,利用菱形及等边三角形的性质,求出,在中,求出DH的长,进而求出BG 的长,设,在中,利用勾股定理,列方程,求出的值即可【详解】解:过点D作,垂足为点H,连接BD和BG,如下图所示:四边形ABCD是菱形,与是等边三角形,且点G恰好为CD边的中点,平分AB,在中,由勾股定理可知:, ,由折叠可知:,故有, 设,则,在中,由勾股定理可知:, 即,解得,故选:B【点睛】本题主要是考查了菱形、等边三角形的性质以及勾股定理列方程求边长,熟练综合利用菱形以及等边三角形的性质,求出对应的边或角,在直角三角形中,找到边之间的关系,设边长,利用勾股定理列方程,这是解决本题的关键2、D【分析】根据题意分两种情况讨论若BPECQP,则BP=CQ,BE=CP;若BPECPQ,则BP=CP=5厘米,BE=CQ=6厘米进行求解即可.【详解】解:当,即点Q的运动速度与点P的运动速度都是2厘米/秒,若BPECQP,则BP=CQ,BE=CP,AB=BC=10厘米,AE=4厘米,BE=CP=6厘米,BP=10-6=4厘米,运动时间t=42=2(秒);当,即点Q的运动速度与点P的运动速度不相等,BPCQ,B=C=90,要使BPE与OQP全等,只要BP=PC=5厘米,CQ=BE=6厘米,即可点P,Q运动的时间t=(秒).综上t的值为2.5或2.故选:D【点睛】本题主要考查正方形的性质以及全等三角形的判定,解决问题的关键是掌握正方形的四、条边都相等,四个角都是直角;两边及其夹角分别对应相等的两个三角形全等同时要注意分类思想的运用3、A【分析】过点作轴交于点,交于点,根据正方形和等边三角形的性质求出点坐标,将与正方形组成的图形绕点顺时针旋转,每次旋转,得出旋转4次为一个循环,即可得出刚好循环了505次,从而得出第2020次旋转结束时,点A的坐标【详解】如图,过点作轴交于点,交于点,四边形是正方形,等边三角形,将与正方形组成的图形绕点顺时针旋转,每次旋转,旋转4次为一个循环,刚好循环了505次,第2020次旋转结束时,点A的坐标为故选:A【点睛】本题考查正方形的性质、等边三角形的性质,旋转的性质以及勾股定理,由题意找出规律是解题的、关键4、D【分析】设点B的坐标为(a,b),则点D的坐标为(,b),点A的坐标为(a,0),分别求出BD、CD、AB,找到a,b,k之间的关系,设点E坐标为(m,n),利用三角形的面积表示出点E的坐标,再利用割补法求出abk=576,进而可得k值【详解】解:设点B的坐标为(a,b),则点D的坐标为(,b),点A的坐标为(a,0),BD=,BC=a,CD=,AB=b,5()=4(),设点E坐标为(m,n),SAOE=3,即,点E在反比例函数上,E(,),SAOE=S矩形OABCSOBCSABE=,abk=36,把abk=36代入得,解得:由图象可知,k0,故选:D【点睛】本题考查反比例函数系数k
“请考生注意,未将试题答案填涂在答题卡上的,请抓紧时间填涂”监考规范用语提示时间为()
监考员处理缺考考生试卷、答题卡及空白试卷、答题卡操作为()。
关于考生考试规范作答,说法正确的是()
考试结束后,主考和监考应完成哪些工作,才能允许考生离场()。
考试结束后,主考和监考应完成哪些工作,才能允许考生离场()。