更多“已知f(x)=1/[x(1+2lnx)],且f(x)等于( )。”相关问题
  • 第1题:

    设f'(lnx)=1+x,则f(x)等于:


    答案:C
    解析:
    提示:设lnx=t,得f'(t)=1+et形式,写成f'(x)=1+ex,积分。

  • 第2题:

    设f(x),f'(x)为已知的连续函数,则微分方程y'十f'(x)y=f(x)f'(x)的通解是:
    A. y=f(x)+ce-f(x) B. y= f(x)ef(x) -ef(x) +c
    C. y=f(x)-1+ce-f(x) D. y=f(x)-1+cef(x)


    答案:C
    解析:
    提示:对关于y、y'的一阶线性方程求通解。其中p(x)=f'(x)、Q(x) =f(x)*f'(x) 利

  • 第3题:

    且f(0)=0,则f(x)等于:


    答案:C
    解析:
    提示:计算等号右边式子,得到f'(x)表达式。计算不定积分。

  • 第4题:

    已知函数f(x)=f(x+4),f(0)=0,且在(—2,2)上有f'(x)=|x|,则f(19)=



    答案:C
    解析:
    由f(x)=f(x+4),知f(x)是周期为4的周期函数,故f(19)=f(-1),

  • 第5题:

    设f(x)是R上的可导函数,且f(x)>0。若f′(x)-3x---2f(x)=0,且f(0)=1,求f(x)。


    答案:
    解析:

  • 第6题:

    设f'(lnx) = 1 + x,则f(x)等于( )。


    答案:C
    解析:
    提示:令t =lnx,再两边积分。

  • 第7题:

    设4/(1-x2)·f(x)=d/dx[f(x)]2,且f(0)=0,则f(x)等于:()

    • A、(1+x)/(1-x)+c
    • B、(1-x)/(1+x)+c
    • C、1n|(1+x)/(1-x)|+c
    • D、1n|(1-x)/(1+x)|+c

    正确答案:C

  • 第8题:

    若f(x)|g(x)h(x)且(f(x),g(x))=1则()。

    • A、g(x)
    • B、h(x)
    • C、f(x)
    • D、f(x)

    正确答案:D

  • 第9题:

    单选题
    奇函数f(x)在闭区间[-1,1]上可导,且|f′(x)|≤M(M为正常数),则必有(  )。
    A

    |f(x)|≥M

    B

    |f(x)|>M

    C

    |f(x)|≤M

    D

    |f(x)|<M


    正确答案: D
    解析:
    因为f(x)为奇函数,故f(0)=0。f(x)在[-1,1]上可导,由拉格朗日中值定理知|f(x)|=|f(x)-f(0)|=|f′(ξ)|·|x-0|≤M·1。故对∀x∈[-1,1],|f(x)|≤M。故应选(C)。

  • 第10题:

    填空题
    已知f′(ex)=xe-x,且f(1)=0,则f(x)=____。

    正确答案: (lnx)2/2
    解析:
    采用换元积分法,ex=t,则x=lnt,f′(t)=(lnt)/t,即f′(x)=(lnx)/x,故f(x)=∫[(lnx)/x]dx=(lnx)2/2+C,又f(1)=0,得C=0,则f(x)=(lnx)2/2。

  • 第11题:

    单选题
    已知f’(x)=tanx2,且f(0)=1,则f(x)等于().
    A

    tanx+x+1

    B

    tanx-x+1

    C

    -tanx-x+1

    D

    -tanx+x+1


    正确答案: B
    解析: 暂无解析

  • 第12题:

    单选题
    设4/(1-x2)·f(x)=d/dx[f(x)]2,且f(0)=0,则f(x)等于:()
    A

    (1+x)/(1-x)+c

    B

    (1-x)/(1+x)+c

    C

    1n|(1+x)/(1-x)|+c

    D

    1n|(1-x)/(1+x)|+c


    正确答案: A
    解析: 计算等号右边式子,得到f′(x)表达式。计算不定积分。

  • 第13题:

    已知函数f(x)在x=1处可导,则f'(1)等于:
    A. 2 B. 1


    答案:D
    解析:
    解:可利用函数在一点x0可导的定义,通过计算得到最后结果。
    选D。

  • 第14题:

    已知f(x)在(-∞,+∞)上是偶函数,若f‘(-x0)=-k≠0,则f‘(x0)等于:
    A.-K
    B.K
    C. -1/K
    D.1/K


    答案:B
    解析:
    提示:利用结论“偶函数的导函数为奇函数”计算。
    f(-x) =f(x),求导-f'(-x)=f'(x),即f'(-x)=-f(x)。将x=x0代入,得f’(-x0) =-f‘(x0),解出f‘(x0)=K。

  • 第15题:

    设函数f(x)可导,且f(x)f'(x)>0,则



    A.Af(1)>f(-1)
    B.f(1)C.|f(1)|>|f(-1)|
    D.|f(1)|<|f|(-1)|

    答案:C
    解析:

  • 第16题:

    已知函数f(x)=lg(x+1)。
    (1)若0(2)若g(x)9;g 2为周期的偶函数,且当0≤x≤1时,有g(x)=f(x),求函数y-=g(x)x∈[1,2])的反函数。


    答案:
    解析:

    (2)

  • 第17题:

    已知f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)一g(x)=X3+x2+1,则f(1)+g(1)=( )。

    A.-3
    B.-1
    C.1
    D.3

    答案:C
    解析:
    令X=﹣1,可得f(一1)-g(一1)=1,又由于f(x),g(x)分别是定义在R上的偶函数和奇函数,即f(一l) =f(1),g(-1)=g(1),则f(一1) -g(1) =f( 1) +g(1)=1,所以答案为C。

  • 第18题:

    已知函数f(x)=∣2x-3∣+6,已知函数g(x)=kx+7,若f(x)与g(x)有且仅有一个交点,则k的值不可能为( )。



    答案:B
    解析:

  • 第19题:

    设f(x)的二阶导数存在,且f′(x)=f(1-x),则下列式中何式可成立()?

    • A、f″(x)+f′(x)=0
    • B、f″(x)-f′(x)=0
    • C、f″(x)+f(x)=0
    • D、f″(x)-f(x)=0

    正确答案:C

  • 第20题:

    已知f’(x)=tanx2,且f(0)=1,则f(x)等于().

    • A、tanx+x+1
    • B、tanx-x+1
    • C、-tanx-x+1
    • D、-tanx+x+1

    正确答案:B

  • 第21题:

    问答题
    若F(x)是f(x)的一个原函数,G(x)是1/f(x)的一个原函数,且F(x)G(x)=-1,f(0)=1,求f(x)。

    正确答案:
    由原方程F(x)G(x)=-1,两边对x求导得F′(x)G(x)+F(x)G′(x)=0。
    又由于F(x)、G(x)分别是f(x)和1/f(x)的原函数,则F′(x)=f(x),G′(x)=1/f(x),且G(x)=-1/F(x)。
    代入F′(x)G(x)+F(x)G′(x)=0,得-f(x)[1/F(x)]+F(x)[1/f(x)]=0,即[F(x)]2=[f(x)]2
    故F(x)=±f(x),F′(x)=±f′(x),即f′(x)=±f(x)。解得f(x)=C1ex及f(x)=C2e-x
    又f(0)=1,得C1=C2=1,则f(x)=e±x
    解析: 暂无解析

  • 第22题:

    单选题
    已知f′(ex)=xe-x,且f(1)=0,则f(x)=(  )。
    A

    (lnx)/2

    B

    (lnx)2/2

    C

    (lnx)2

    D

    lnx


    正确答案: B
    解析:
    采用换元积分法,ex=t,则x=lnt,f′(t)=(lnt)/t,即f′(x)=(lnx)/x,故f(x)=∫[(lnx)/x]dx=(lnx)2/2+C,又f(1)=0,得C=0,则f(x)=(lnx)2/2。

  • 第23题:

    单选题
    设f(x)具有任意阶导数,且f′(x)=[f(x)]2,则f(n)(x)=(  )。
    A

    n[f(x)]n1

    B

    n![f(x)]n1

    C

    (n+1)[f(x)]n1

    D

    (n+1)![f(x)]n1


    正确答案: A
    解析:
    逐次求导:
    f″(x)=2f(x)f′(x)=2[f(x)]3
    f‴(x)=3·2[f(x)]2f′(x)=3![f(x)]2·[f(x)]2=3![f(x)]4
    ……
    fn(x)=n![f(x)]n1

  • 第24题:

    单选题
    已知f′(ex)=xe-x,且f(1)=0,则f(x)=(  )。
    A

    lnx

    B

    lnx/2

    C

    (lnx)2

    D

    (lnx)2/2


    正确答案: D
    解析:
    采用换元积分法,ex=t,则x=lnt,f′(t)=(lnt)/t,即f′(x)=(lnx)/x,故f(x)=∫[(lnx)/x]dx=(lnx)2/2+C,又f(1)=0,得C=0,则f(x)=(lnx)2/2。