对于n元齐次线性方程组,如果其系数矩阵的秩r小于未知量的个数n, 则方程组的基础解系存在,且含()个解向量.A.r.B.n.C.n-r.D.n+r.

题目

对于n元齐次线性方程组,如果其系数矩阵的秩r小于未知量的个数n, 则方程组的基础解系存在,且含()个解向量.

A.r.

B.n.

C.n-r.

D.n+r.


相似考题
更多“对于n元齐次线性方程组,如果其系数矩阵的秩r小于未知量的个数n, 则方程组的基础解系存在,且含()个解向量.”相关问题
  • 第1题:

    设n元齐次线性方程组Ax=o,r(A)=rn,则基础解系含有解向量的个数n个。()

    此题为判断题(对,错)。


    参考答案:错误

  • 第2题:

    对于有5个变量的齐次线性方程组AX=0,系数矩阵的秩r(A)=3,则其基础解析中向量个数为()。

    A.2

    B.5

    C.3

    D.1


    正确答案:A

  • 第3题:

    若A是m×n矩阵,且m≠n,则当R(A)=n时,齐次线性方程组AX=0只有零解


    答案:对
    解析:

  • 第4题:

    非齐次线性方程组Ax=b中未知量个数为n,方程个数为m,系数矩阵A的秩为r,则

    A.r=m时,方程组A-6有解.
    B.r=n时,方程组Ax=b有唯一解.
    C.m=n时,方程组Ax=b有唯一解.
    D.r

    答案:A
    解析:
    因为A是m×n矩阵,若秩r(A)=m,则m=r(A)≤r(A,b)≤m.于是r(A)=r(A,b).故方程组有解,即应选(A).或,由r(A)=m,知A的行向量组线性无关,那么其延伸必线性无关,故增广矩阵(A,b)的m个行向量也是线性无关的,亦知r(A)=r(A,b).关于(B)、(D)不正确的原因是:由r(A)=n不能推导出r(A,b)=n(注意A是m×n矩阵,m可能大于n),由r(A)=r亦不能推导出r(A,b)=r,你能否各举一个简单的例子?至于(C),由克拉默法则,r(A)=n时才有唯一解,而现在的条件是r(A)=r,因此(C)不正确,

  • 第5题:

    设n元齐次线性方程组Ax=0的系数矩阵A的秩为r,则Ax=0有非零解的充要条件为( )。

    A.r=n
    B.r<n
    C.r≥n
    D.r>n

    答案:B
    解析:
    Ax=0有非零解的充要条件为|A|=0,即矩阵A不是满秩的,r<n。

  • 第6题:

    非齐线性方程组AX=b中未知量的个数为n,方程的个数为m,系数矩阵A的秩为r,则( )。

    A 当r=m时,方程组AX=b有解
    B 当r=n时,方程组AX=b有惟一解
    C 当m=n时,方程组AX=b有惟一解
    D 当r<n时,方程组AX=b有无穷多解

    答案:A
    解析:
    系数矩阵A是m×n矩阵,增个矩阵B是m×(n+1)矩阵当R(A)=r=m时,由于R(B)≥R(A)=m,而B仅有m行,故有R(B)≤m,从而R(B)=m,即R(A)=R(B),方程组有解

  • 第7题:

    求齐次线性方程组的基础解系


    答案:
    解析:

  • 第8题:

    设齐次线性方程组
      
      其中a≠0,b≠0,n≥2.试讨论a,b为何值时,方程组仅有零解,有无穷多组解?在有无穷多组解时,求出全部解,并用基础解系表示全部解.


    答案:
    解析:

  • 第9题:

    求出一个齐次线性方程组,使它的基础解系由向量组成


    答案:
    解析:

  • 第10题:

    求齐次线性方程组的全部解(要求用基础解系表示)。


    答案:
    解析:
    解:本题考查齐次线性方程组的解法。

  • 第11题:

    问答题
    设AX=0与BX=0均为n元齐次线性方程组,秩r(A)=r(B),且方程组AX=0的解均为方程组BX=0的解,证明方程组AX=0与BX=0同解.

    正确答案:
    设r(A)=r(B)=r,方程组AX=0的基础解系为①:ζ12,…,ζn-r,方程组BX=0的基础解系为②:η12,…,ηn-r.
    构造向量组③:ζ12,…,ζn-r12,…,ηn-r.
    由向量组①可由②线性表示,则向量组②和③等价,从而r(③)=n-r,所以ζ12,…,ζn-r是向量组③的极大线性无关组,有η12,…,ηn-r可由ζ12,…,ζn-r线性表示,即BX=0的任一解都可由ζ12,…,ζn-r线性表示,故BX=0的解都是AX=0的解,所以方程组AX=0与BX=0同解.
    解析: 暂无解析

  • 第12题:

    单选题
    n元线性方程组AX(→)=b(→)有唯一解的充要条件为(  )。
    A

    A为方阵且|A|≠0

    B

    导出组AX()0()仅有零解

    C

    秩(A)=n

    D

    系数矩阵A的列向量组线性无关,且常数向量b()与A的列向量组线性相关


    正确答案: C
    解析:
    A项,系数矩阵A不一定是方阵;B项,导出组只有零解,方程组AX()b()不一定有解;C项,当r(A)=n时,不一定有r(A)=r(A(_))=n;D项,b()可由A的列向量组线性表示,则方程组AX()b()有唯一解。

  • 第13题:

    设A是4×6矩阵,r(A)=2,则齐次线性方程组Ax=0的基础解系中所含向量的个数是( )

    A.1 B.2

    C.3 D.4


    正确答案:D

  • 第14题:

    非齐次线性方程组任意两个解之差为对应系数的齐次线性方程组的解。()


    参考答案:正确

  • 第15题:

    若A是m×n矩阵,且m≠n,则当R(A)=m时,非齐次线性方程组AX=b,有解


    答案:对
    解析:

  • 第16题:

    设n阶矩阵A的伴随矩阵A^*≠0,若ζ1,ζ2,ζ3,ζ4是非齐次线性方程组Ax=b的互不相等的解,则对应的齐次线性方程组Ax=0的基础解系

    A.不存在.
    B.仅含一个非零解向量.
    C.含有两个线性无关的解向量.
    D.含有三个线性无关的解向量.

    答案:B
    解析:

  • 第17题:

    非齐次线性方程组Ax=B中未知变量的个数为n,方程的个数为m,系数矩阵A的秩为r,则下列说法正确的是( )。


    答案:D
    解析:
    非齐次方程组解的判定需要验证r(A)是否等于r(A,b),A,B,C都无法判断。D项:r=m时,r(A)=r(A,b)=m,方程组必有解.

  • 第18题:

    设齐次线性方程组其中ab≠0,n≥2.讨论a,b取何值时,方程组只有零解、有无穷多个解?在有无穷多个解时求出其通解.


    答案:
    解析:

  • 第19题:

    为3个n维向量,已知n元齐次方程组AX=0的每个解都可以用线性表示,并且r(A)=n-3,证明{图2为AX=0的一个基础解系.}


    答案:
    解析:

  • 第20题:

    已知下列非齐次线性方程组(Ⅰ),(Ⅱ)
      
      (1)求解方程组(Ⅰ),用其导出组的基础解系表示通解.
      (2)当方程组中的参数m,n,t为何值时,方程组(Ⅰ)与(Ⅱ)同解.


    答案:
    解析:

  • 第21题:

    已知齐次线性方程组(1)方程组仅有零解;(2)方程组有非零解,在有非零解时,求此方程组的一个基础解系.


    答案:
    解析:

  • 第22题:

    非齐次线性方程组AX=b中未知数个数为n,方程个数为m,系数矩阵A的秩为r,则( ).

    A.r=m时,方程组AX=b有解
    B.r=n时,方程组AX=b有唯一解
    C.m=m时,方程组AX=b有唯一解
    D.r<n时,方程组AX=b有无穷多解

    答案:A
    解析:

  • 第23题:

    填空题
    设A为n阶方阵,则n元齐次线性方程组AX(→)=0(→)仅有零解的充要条件是|A|____。

    正确答案: ≠0
    解析:
    依据齐次线性方程组性质可知,系数行列式|A|≠0时,方程组仅有零解。

  • 第24题:

    单选题
    非齐次线性方程组AX(→)=b(→)中未知数个数为n,方程个数为m,系数矩阵A的秩为r,则(  )。
    A

    r=m时,方程组AX()b()有解

    B

    r=n时,方程组AX()b()有唯一解

    C

    m=n时,方程组AX()b()有唯一解

    D

    r<n时,方程组AX()b()有无穷多解


    正确答案: A
    解析:
    A项,由于r=m,则方程组AX()b()的增广矩阵化为阶梯形矩阵时,阶梯形矩阵不为0的行数为m,r(A)=r(A(_))=m,所以AX()b()有解;
    B项,当r=n时,可知n≤m,当n<m时,则方程组AX()b()不一定只有唯一解;
    C项,当m=n时,r(A(_))不一定等于r,方程组不一定有解;
    D项,当r<n时,不能保证r(A)=r(A(_))=r,方程组AX()b()不一定有解。