更多“已知y1=x为微分方程x2y″-2xy′+2y=0之一解,则此方程的通解为____。”相关问题
  • 第1题:

    微分方程(3 + 2y)xdx+ (1+x)dy= 0的通解为:
    (A) l1+ x2=Cy (B) (1+x2)(3 + 2y) = C


    答案:B
    解析:
    解:选B。

  • 第2题:

    若二阶常系数线性齐次微分方程y"+ay'+by=0的通解为y=(C1+C2x)e^x,则非齐次方程y"+ay'+by=x满足条件y(0)=2,y'(0)=0的解为y=________.


    答案:1、y=-xe^x+x+2.
    解析:

  • 第3题:

    微分方程y''+2y=0的通解是( )。


    答案:D
    解析:
    提示:这是二阶常系数线性齐次方程,特征方程为

  • 第4题:

    微分方程y'+x=0的通解为


    答案:D
    解析:
    [解析]所给方程为可分离变量方程.

  • 第5题:

    微分方程y′-2xy=0的通解为y=_____.


    答案:
    解析:
    所给方程为可分离变量方程.

  • 第6题:

    填空题
    若二阶常系数线性齐次微分方程y″+ay′+by=0的通解为y=(C1+C2x)ex,则非齐次方程y″+ay′+by=x满足条件y(0)=2,y′(0)=0的解为y=____。

    正确答案: -xex+x+2
    解析:
    由题意可知,r=1是已知齐次方程对应的特征方程的二重根,则该特征方程为(r-1)2=r2-2r+1=0,齐次方程为y″-2y′+y=0设y*=Ax+B为已知非齐次方程y″-2y′+y=x的特解,代入y″-2y′+y=x得0-2A+Ax+B=x,则A=1,B=2A=2。故已知非齐次方程的通解为y=(C1+C2x)ex+x+2。又y(0)=2,y′(0)=0,代入以上通解得C1=0,C2=-1。故所求方程特解为y=-xex+x+2。

  • 第7题:

    单选题
    设y=ex(c1sinx+c2cosx)(c1、c2为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为(  )。
    A

    y″-y′+y=0

    B

    y″-2y′+2y=0

    C

    y″-2y′=0

    D

    y′+2y=0


    正确答案: B
    解析:
    根据题中所给的通解y=ex(c1sinx+c2cosx)的结构可知,所求方程对应的特征根为λ12=1±i,特征方程为[λ-(1+i)][λ-(1-i)]=λ2-2λ+2=0,则所求方程为y″-2y′+2y=0。

  • 第8题:

    填空题
    微分方程y″-2y′+2y=ex的通解为____。

    正确答案: y=ex(c1cosx+c2sinx)+ex
    解析:
    原微分方程为y″-2y′+2y=ex,其对应的齐次方程为y″-2y′+2y=0,该齐次方程的特征方程为r2-2r+2=0,解得r12=1±i。故原方程对应的齐次方程的通解为y(_)=ex(c1cosx+c2sinx)。设y*=Aex为原方程的特解,将其代入原方程可解得A=1。故原方程的通解为y=ex(c1cosx+c2sinx)+ex

  • 第9题:

    单选题
    (2012)以y1=ex,y2=e-3x为特解的二阶线性常系数齐次微分方程是:()
    A

    y″-2y′-3y=0

    B

    y″+2y′-3y=0

    C

    y″-3y′+2y=0

    D

    y″+2y′+y=0


    正确答案: D
    解析: 暂无解析

  • 第10题:

    填空题
    设y1=3+x2,y2=3+x2+e-x是某二阶线性非齐次微分方程的两个特解,且相应的齐次方程有一个解为y3=x,则该方程的通解为____。

    正确答案: y=3+x2+c1x+c2e-x
    解析:
    由解的叠加原理可知,y2-y1=ex是原方程对应齐次方程的一个特解,可知该特解与题中给出的y3=x线性无关,则原方程的通解为y=3+x2+c1x+c2ex

  • 第11题:

    单选题
    设非齐次线性微分方程y′+P(x)y=Q(x)有两个不同的解y1(x),y2(x),C为任意常数,则该方程的通解是(  )。
    A

    C[y1(x)-y2(x)]

    B

    y1(x)+C[y1(x)-y2(x)]

    C

    C[y1(x)+y2(x)]

    D

    y1(x)+C[y1(x)+y2(x)]


    正确答案: C
    解析:
    由题意可知,y(_)=y1(x)-y2(x)是y′+P(x)y=0的一个解,则y′+P(x)y=0的通解是C[y1(x)-y2(x)]。故所求方程通解为y1(x)+C[y1(x)-y2(x)]

  • 第12题:

    单选题
    已知y1=x为微分方程x2y″-2xy′+2y=0之一解,则此方程的通解为(  )。
    A

    y=c1x

    B

    y=c1x2

    C

    y=c1x+c2x3

    D

    y=c1x+c2x2


    正确答案: C
    解析:
    设与y2是与y1线性无关的一个特解,则y2′=u+xu′,y2″=2u′+xu″,其代入x2y″-2xy′+2y=0中,得2x2u′+x3u″-2xu-2x2u′+2xu=0,即x3u″=0。u″=0,得u=x,即y2=x2。故原方程的通解为y=c1x+c2x2

  • 第13题:

    微分方程(1+ 2y)xdx + (1+ x2 )dy = 0的通解为;

    (以上各式中,c 为任意常数)


    答案:B
    解析:

  • 第14题:

    已知是某二阶常系数非齐次线性微分方程的3个解,则该方程的通解为y=________.


    答案:
    解析:
    本题主要考查二阶常系数线性微分方程y"+py'+qy=f(x)解的性质和结构,关键是找出对应齐次线性微分方程的两个线性无关的解.由线性微分方程解的性质知是对应齐次线性微分方程的两个线性无关的解,则该方程的通解为,其中C1,C2为任意常数.

  • 第15题:

    微分方程(1+ 2y)xdx + (1+x2)dy=0的通解是( )。


    答案:B
    解析:
    提示:可分离变量方程,解法同1-122题。

  • 第16题:

    设y1(x)、y2(x)是二阶常系数线性微分方程y″+py′+qy=0的两个线性无关的解,则它的通解为______.


    答案:
    解析:
    由二阶线性常系数微分方程解的结构可知所给方程的通解为其中C1,C2为任意常数.

  • 第17题:

    二阶线性常系数齐次微分方程y″+2y=0的通解为____.


    答案:
    解析:

  • 第18题:

    单选题
    函数(C1,C2为任意数)是微分方程y″-y′-2y=0的(  )。[2014年真题]
    A

    通解

    B

    特解

    C

    不是解

    D

    解,既不是通解又不是特解


    正确答案: D
    解析:
    微分方程y″-y′-2y=0的特征方程为:r2-r-2=0,解特征方程得:r1=2,r2=-1。故其通解为:y=C1e2x+C2e-x,即题中函数是方程的解,但不是通解或特解。

  • 第19题:

    填空题
    已知某二阶非齐次线性微分方程的三个解分别为y1=ex,y2=xex,y3=x2ex,则它的通解为____。

    正确答案: y=C1(x-1)ex+C2(x2-1)ex+ex
    解析:
    因为y1=ex,y2=xex,y3=x2ex是二阶非齐次微分方程的特解,故xex-ex,x2ex-ex是该微分方程对应齐次微分方程的两个线性无关的解。故二阶非齐次微分方程的通解为y=C1(xex-ex)+C2(x2ex-ex)+ex,化简可得y=C1(x-1)ex+C2(x2-1)ex+ex

  • 第20题:

    填空题
    已知y1=x为微分方程x2y″-2xy′+2y=0之一解,则此方程的通解为____。

    正确答案: y=c1x+c2x2
    解析:
    设与y2是与y1线性无关的一个特解,则y2′=u+xu′,y2″=2u′+xu″,其代入x2y″-2xy′+2y=0中,得2x2u′+x3u″-2xu-2x2u′+2xu=0,即x3u″=0。u″=0,得u=x,即y2=x2。故原方程的通解为y=c1x+c2x2

  • 第21题:

    填空题
    微分方程x2y″+3xy′-3y=x3的通解为____。

    正确答案: y=c1/x3+c2x+x3/12
    解析:
    原微分方程为x2y″+3xy′-3y=x3,其欧拉方程形式为D(D-1)y+3Dy-3y=e3t,即D2y+2Dy-3y=e3t,即d2y/dt2+2dy/dt-3y=e3t 。解得其通解为y=c1e3t+c2et+e3t/12,即y=c1/x3+c2x+x3/12。

  • 第22题:

    单选题
    已知y1=x为微分方程x2y″-2xy′+2y=0之一解,则此方程的通解为(  )。
    A

    y=c1x+c2

    B

    y=c1x3+c2x

    C

    y=c1x3+c2x2

    D

    y=c1x+c2x2


    正确答案: D
    解析:
    设与y2是与y1线性无关的一个特解,则y2′=u+xu′,y2″=2u′+xu″,其代入x2y″-2xy′+2y=0中,得2x2u′+x3u″-2xu-2x2u′+2xu=0,即x3u″=0。u″=0,得u=x,即y2=x2。故原方程的通解为y=c1x+c2x2

  • 第23题:

    单选题
    已知微分方程y′+p(x)y=q(x)(q(x)≠0)有两个不同的解y1(x),y2(x),C为任意常数,则该微分方程的通解是(  )。[2012年真题]
    A

    y=C(y1-y2

    B

    y=C(y1+y2

    C

    y=y1+C(y1+y2

    D

    y=y1+C(y1-y2


    正确答案: D
    解析:
    所给方程的通解等于其导出组的通解加上该方程对应齐次方程的一个特解,(y1-y2)是导出组的一个解,C(y1-y2)是导出组的通解。

  • 第24题:

    单选题
    设y=ex(c1sinx+c2cosx)(c1、c2为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为(  )。
    A

    y″+2y′+2y=0

    B

    y″-2y′+2y=0

    C

    y″-2y′-2y=0

    D

    y″+2y′+2y=0


    正确答案: A
    解析:
    根据题中所给的通解y=ex(c1sinx+c2cosx)的结构可知,所求方程对应的特征根为λ12=1±i,特征方程为[λ-(1+i)][λ-(1-i)]=λ2-2λ+2=0,则所求方程为y″-2y′+2y=0。