单选题n维向量α(→)1,α(→)2,…,α(→)s线性无关的充要条件是(  )。A 存在不全为0的k1,k2,…,ks使klα(→)1+k2α(→)2+…+ksα(→)s≠0(→)B 添加向量β(→)后,α(→)1,α(→)2,…,α(→)s,β(→)线性无关C 去掉任一向量α(→)i后,α(→)1,α(→)2,…,α(→)i-1,α(→)i+1,…,α(→)s线性无关D α(→)1,α(→)2-α(→)1,α(→)3-α(→)1,…,α(→)s-α(→)1线性无关

题目
单选题
n维向量α(→)1,α(→)2,…,α(→)s线性无关的充要条件是(  )。
A

存在不全为0的k1,k2,…,ks使klα()1+k2α()2+…+ksα()s0()

B

添加向量β()后,α()1α()2,…,α()sβ()线性无关

C

去掉任一向量α()i后,α()1α()2,…,α()i1α()i1,…,α()s线性无关

D

α()1α()2α()1α()3α()1,…,α()sα()1线性无关


相似考题
更多“单选题n维向量α(→)1,α(→)2,…,α(→)s线性无关的充要条件是(  )。A 存在不全为0的k1,k2,…,ks使klα(→)1+k2α(→)2+…+ksα(→)s≠0(→)B 添加向量β(→)后,α(→)1,α(→)2,…,α(→)s,β(→)线性无关C 去掉任一向量α(→)i后,α(→)1,α(→)2,…,α(→)i-1,α(→)i+1,…,α(→)s线性无关D α(→)1,α(→)2-α(→)1,α(→)3-α(→)1,…,α(→)s-α(→)1线性无关”相关问题
  • 第1题:

    单选题
    已知向量组α1,α2,α3,α4线性无关,则(  ).
    A

    α12,α23,α34,α41线性无关

    B

    α12,α23,α34,α41线性无关

    C

    α12,α23,α34,α41线性无关

    D

    α12,α23,α34,α41线性无关


    正确答案: D
    解析:
    A项,(α12)+(α34)-(α23)-(α41)=0,知此组向量不一定线性无关;B项,全部相加为0,此组向量不一定线性相关;C项,设有数k1,k2,k3,k4,使k1(α12)+k2(α23)+k3(α34)+k4(α41)=0即(k1+k4)α1+(k1+k2)α2+(k2+k3)α3+(k3+k4)α4=0,因α1,α2,α3,α4线性无关,故k1,k2,k3,k4,全为0,所以此组向量线性无关;D项,因(α12)-(α23)+(α34)+(α41)=0.

  • 第2题:

    单选题
    如果向量b(→)可以由向量组α(→)1,α(→)2,…,α(→)3线性表示,则(  )。
    A

    存在一组不全为零的数是k1,k2,…ks,使b()=k1α()1+k2α()2+…+ksα()s成立

    B

    存在一组全为零的数k1,k2,…ks,使b()=k1α()1+k2α()2+…+ksα()s成立

    C

    存在一组数k1,k2,…ks,使b()=k1α()1+k2α()2+…+ksα()s成立

    D

    对b的线性表达式唯一


    正确答案: C
    解析:
    向量b()可能为零向量也可能为非零向量,故由线性表示的定义可以判定C项正确。

  • 第3题:

    单选题
    设向量组(I)α(→)1,α(→)2,…,α(→)s,其秩为r1;向量组(Ⅱ)β(→)1,β(→)2,…,β(→)s,其秩为r2,且β(→)i(i=1,2,…,s)均可以由α(→)1,…,α(→)s线性表示,则(  )。
    A

    向量组α()1β()1α()2β()2,…,α()sβ()s的秩为r1+r2

    B

    向量组α()1β()1α()2β()2,…,α()sβ()s秩为rl-r2

    C

    向量组α()1α()2,…,α()sβ()1β()2,…,β()s的秩为rl+r2

    D

    向量组α()1α()2,…,α()sβ()1β()2,…,β()s的秩为rl


    正确答案: C
    解析:
    向量组β()1β()2,…,β()s可由向量组α()1α()2,…,α()s线性表示,则向量组α()1α()2,…,α()sβ()1β()2,…,β()s也可由其线性表示,所以α()1α()2,…,α()s向量组的极大线性无关组也是该向量组的极大线性无关组,故其秩为rl

  • 第4题:

    单选题
    设n维向量组(Ⅰ)α1,α2,…,αs线性无关,(Ⅱ)β1,β2,…,βt线性无关,且αi不能由(Ⅱ)线性表示(i=1,2,…,s),βj且不能由(I)线性表示(j=1,2,…,t),则向量组α1,α2,…,αs,β1,β2,…,βt(  ).
    A

    一定线性相关

    B

    一定线性无关

    C

    可能线性相关,也可能线性无关

    D

    既不线性相关,也不线性无关


    正确答案: C
    解析:
    设(Ⅰ):α1=(1,0,0),α2=(1,1,0),(Ⅱ):β1=(0,0,1),β2=(0,1,1).
    则向量组(Ⅰ)和(Ⅱ)各自线性无关,但α1,α2,β1,β2线性相关;令(Ⅱ):β1=(0,0,1),α1,α2,β1也满足条件,但α1,α2,β1线性无关.

  • 第5题:

    单选题
    3维向量组A:α1,α2,…,αM线性无关的充分必要条件是().
    A

    对任意一组不全为0的数k1,k2,…,kM,都有后

    B

    向量组A中任意两个向量都线性无关

    C

    向量组A是正交向量组

    D

    αM不能由线性表示


    正确答案: D
    解析: 暂无解析

  • 第6题:

    问答题
    设向量组α(→)1,α(→)2,…,α(→)s的秩为r>0,证明:  (1)α(→)1,α(→)2,…,α(→)s中任意r个线性无关的向量都构成它的一个极大线性无关组;  (2)若α(→)1,α(→)2,…,α(→)s中每个向量都可由其中某r个向量线性表示,则这r个向量必为α(→)1,α(→)2,…,α(→)s的一个极大线性无关组。

    正确答案:
    (1)设①:α()j1,α()j2,…,α()jrα()1,α()2,…,α()s中任意r个线性无关的向量,由于向量组的秩为r,故向量组中任意多于r个向量的向量组必线性相关,所以α()j1,α()j2,…,α()jr,α()i(i=1,2,…,s;i≠j1,j2,…,jr)线性相关,从而①为原向量组的极大线性无关组。
    (2)设①:α()j1,α()j2,…,α()jrα()1,α()2,…,α()s中的r个向量,且原向量组中每个向量都可由①线性表示,则原向量组与向量组①等价。等价向量组有相同的秩,原向量组的秩为r,所以向量组①的秩为r。又向量组①只含r个向量,故向量组①线性无关,因此由(1)的结论有①是原向量组的极大线性无关组。
    解析: 暂无解析

  • 第7题:

    单选题
    设α(→)1,α(→)2,…,α(→)s均为n维列向量,A是m×n矩阵,下列选项正确的是(  )。
    A

    α()1α()2,…,α()s线性相关,则Aα()1,Aα()2,…,Aα()s线性相关

    B

    α()1α()2,…,α()s线性相关,则Aα()1,Aα()2,…,Aα()s线性无关

    C

    α()1α()2,…,α()s线性无关,则Aα()1,Aα()2,…,Aα()s线性相关

    D

    α()1α()2,…,α()s线性无关,则Aα()1,Aα()2,…,Aα()s线性无关


    正确答案: A
    解析:
    设有数k1,k2,…,ks,使k1α()1+k2α()2+…+ksα()s0(),则有A(k1α()1+k2α()2+…+ksα()s)=k1Aα()1+k2Aα()2+…+ksAα()s0()。因α()1α()2,…,α()s线性相关,故k1,k2,…,ks不全为0,知Aα()1,Aα()2,…,Aα()s线性相关。

  • 第8题:

    单选题
    n维向量α(→)1,α(→)2,…,α(→)s线性无关的充要条件是(  )。
    A

    存在不全为0的k1,k2,…,ks使klα()1+k2α()2+…+ksα()s0()

    B

    添加向量β()后,α()1α()2,…,α()sβ()线性无关

    C

    去掉任一向量α()i后,α()1α()2,…,α()i1α()i1,…,α()s线性无关

    D

    α()1α()2α()1α()3α()1,…,α()sα()1线性无关


    正确答案: C
    解析:
    D项,相当于对α()1α()2,…,α()s构成的矩阵作初等变换,初等变换不改变向量组的秩和向量组的线性相关性。

  • 第9题:

    单选题
    n维向量组,α(→)1,α(→)2,…,α(→)s(3≤s≤n)线性无关的充要条件是(  )。
    A

    存在一组不全为0的数k1,k2,…,ks,使kα()1+k2α()2+…+ksα()s0()

    B

    α()1α()2,…,α()s中任意两个向量都线性无关

    C

    α()1α()2,…,α()s中存在一个向量不能由其余向量线性表示

    D

    α()1α()2,…,α()s中任何一个向量都不能由其余向量线性表示


    正确答案: C
    解析:
    向量组线性相关的充要条件是其中至少有一个向量可以由其余向量表示,若向量组中任何一个向量都不能由其余向量线性表示,则它们必线性无关;反之亦然。

  • 第10题:

    问答题
    在n维行向量组α(→)1,α(→)2,…,α(→)r(r≥2)中,α(→)r≠0,试证:对任意的k1,k2,kr-1,向量组β(→)1=α(→)1+k1α(→)r,β(→)2=α(→)2+k2α(→)r,…,β(→)r-1=α(→)r-1+kr-1α(→)r线性无关的充要条件是α(→)1,α(→)2,…,α(→)r线性无关。

    正确答案:
    (1)必要性
    l1β()1+l2β()2+…+lr-1β()r-1=0①,即l1(α()1+k1α()r)+l2(α()2+k2α()r)+…+lr-1(α()r-1+kr-1α()r)=0⇒l1α()1+l2α()2+…+lr-1α()r-1+(l1k1+l2k2+…+lr-1kr-1)α()r=0
    l1k1+l2k2+…+lr-1kr-1=lr
    l1α()1+l2α()2+…+lr-1α()r-1+lrα()r=0②
    因为β()1,β()2,…,β()r-1线性无关,所以当且仅当l1=l2=…=lr-1=0时①式成立,即②也成立。又因为α()r≠0,所以当且仅当l1=l2=…=lr-1=lr=0时②成立,故α()1,α()2,…,α()r线性无关。
    (2)充分性
    l1β()1+l2β()2+…+lr-1β()r-1=0,即l1α()1+l2α()2+…+lr-1α()r-1+(l1k1+l2k2+…+lr-1kr-1)α()r=0。
    因为α()1,α()2,…,α()r线性无关,所以l1=l2=…=lr-1=(l1k1+l2k2+…+lr-1kr-1)=0,故β()1,β()2,…,β()r-1线性无关。
    解析: 暂无解析

  • 第11题:

    单选题
    下列说法不正确的是(  ).
    A

    s个n维向量α1,α2,…,αs线性无关,则加入k个n维向量β1,β2,…,βk后的向量组仍然线性无关

    B

    s个n维向量α1,α2,…,αs线性无关,则每个向量增加k维分量后得到的向量组仍然线性无关

    C

    s个n维向量α1,α2,…,αs线性相关,则加入k个n维向量β1,β2,…,βk后得到的向量组仍然线性相关.

    D

    s个n维向量α1,α2,…,αs线性无关,则减少一个向量后得到的向量组仍然线性无关.


    正确答案: B
    解析:
    A项,一个线性无关组加入k个线性相关的向量,新的向量组线性相关;B项,线性无关组的延伸组仍为线性无关组;C项,线性相关组加入k个向量,无论k个向量是否相关,构成的新的向量组必是线性相关的;D项,线性无关组中的任意个组合均是无关的.

  • 第12题:

    单选题
    向量组α(→)1,α(→)2,…,α(→)s线性无关的充分条件是(  )。
    A

    α()1α()2,…,α()s均不为零向量

    B

    α()1α()2,…,α()s中任意两个向量的分量不成比例

    C

    α()1α()2,…,α()s中任意一个向量均不能由其余s-1个向量线性表示

    D

    α()1α()2,…,α()s中有一部分向量线性无关


    正确答案: D
    解析:
    A项,均不为零的向量未必线性无关;
    B项,例如α()1=(1,0,0)Tα()2=(0,1,0)Tα()3=(1,1,0)T,则其中任意两个向量的分量均不成比例,但向量组α()1α()2α()3线性相关;
    C项,反证法,如果α()1α()2,…,α()s线性相关,则至少有一个向量可由其余s-1个向量线性表示,与题设矛盾;
    D项,向量组α()1α()2,…,α()s中部分向量线性无关时,未必全部向量线性无关。

  • 第13题:

    单选题
    如果向量β可由向量组α1,α2,…,αs,线性表示,则下列结论中正确的是:()
    A

    存在一组不全为零的数k1,k2,…,ks使等式β=k1α1+k2α2+…+ksαs成立

    B

    存在一组全为零的数k1,k2,…,ks,使等式β=k1α1+k2α2+…+ksαs,成立

    C

    存在一组数k1,k2,…,ks,使等式β=k1α1+k2α2+…+ksαs,成立

    D

    对β的线性表达式唯一


    正确答案: D
    解析: 暂无解析

  • 第14题:

    单选题
    n维向量组,α1,α2,…,αs(3≤s≤n)线性无关的充要条件是(  ).
    A

    存在一组不全为0的数k1,k2,…,kis,使kα1+k2α2+…+ksαs≠0

    B

    α1,α2,…,αs,中任意两个向量都线性无关

    C

    α1,α2,…,αs,中存在一个向量不能由其余向量线性表示

    D

    α1,α2,…,αs,中任何一个向量都不能由其余向量线性表示


    正确答案: A
    解析:
    向量组线性相关的冲要条件是其中至少有一个向量可以由其余向量表示,若向量组中任何一个向量都不能由其余向量线性表示,则它们必线性无关;反之亦然.

  • 第15题:

    单选题
    n维向量组α(→)1,α(→)2,…,α(→)s线性无关的充分条件是(  )。
    A

    α()1α()2,…,α()s中没有零向量

    B

    向量组的个数不大于维数,即s≤n

    C

    α()1α()2,…,α()s中任意两个向量的分量不成比例

    D

    某向量β()可由α()1α()2,…,α()s线性表示,且表示法唯一


    正确答案: B
    解析:
    A项,例如α()1=(1,-1,2),α()2=(2,-2,4)都是非零向量,但α()1α()2线性相关;
    B项,如A项中的例子,α()1α()2个数小于维数,但其线性相关;
    C项,例如α()1=(1,0,-1),α()2=(0,3,0),α()3=(1,3,-1)中任意两个向量的分量均不成比例,但α()1α()2α()3线性相关;
    D项,β()可由α()1α()2,…,α()s线性表示,且表示法唯一,即α()1α()2,…,α()sα()1α()2,…,α()sβ()的线性极大无关组,故α()1α()2,…,α()s线性无关。

  • 第16题:

    单选题
    设n维向量组(Ⅰ)α(→)1,α(→)2,…,α(→)s线性无关,(Ⅱ)β(→)1,β(→)2,…,β(→)t线性无关,且α(→)i不能由(Ⅱ)线性表示(i=1,2,…,s),且β(→)j不能由(Ⅰ)线性表示(j=1,2,…,t),则向量组α(→)1,α(→)2,…,α(→)s,β(→)1,β(→)2,…,β(→)t(  )。
    A

    一定线性相关

    B

    一定线性无关

    C

    可能线性相关,也可能线性无关

    D

    既不线性相关,也不线性无关


    正确答案: A
    解析:
    设(Ⅰ):α()1=(1,0,0),α()2=(1,1,0),(Ⅱ):β()1=(0,0,1),β()2=(0,1,1)。则向量组(Ⅰ)和(Ⅱ)各自线性无关,但α()1α()2β()1β()2线性相关;
    令(Ⅱ):β()1=(0,0,1),α()1α()2β()1也满足条件,但α()1α()2β()1线性无关。