参考答案和解析
正确答案:A
更多“3维向量组A:α1,α2,…,αM线性无关的充分必要条件是().”相关问题
  • 第1题:

    设a1,a2,a3均为3维向量,则对任意常数k,l,向量组线性无关是向量组a1,a2,a3线性无关的( )

    A.必要非充分条件
    B.充分非必要条件
    C.充分必要条件
    D.既非充分也非必要条件

    答案:A
    解析:

  • 第2题:

    设A为s×n矩阵且A的行向量组线性无关,K为r×s矩阵。证明:B=KA行无关的充分必要条件是R(K)=r


    答案:
    解析:

  • 第3题:

    设向量组I:α1α2αr…,可由向量组Ⅱβ1,β2,…βs:线性表示,下列命题正确的是( )。

    A.若向量组I线性无关.则r≤S
    B.若向量组I线性相关,则r>s
    C.若向量组Ⅱ线性无关,则r≤s
    D.若向量组Ⅱ线性相关,则r>s

    答案:A
    解析:
    由于向量组I能由向量组Ⅱ线性表示,所以r(I)≤r(Ⅱ),即

  • 第4题:

    单选题
    设向量β(→)可由向量组α(→)1,α(→)2,…,α(→)m线性表示,但不能由向量组(Ⅰ):α(→)1,α(→)2,…,α(→)m-1线性表示。记向量组(Ⅱ):α(→)1,α(→)2,…,α(→)m-1,β(→),则(  )。
    A

    α()m不能由(Ⅰ)线性表示,也不能由(Ⅱ)线性表示

    B

    α()m不能由(Ⅰ)线性表示,但可由(Ⅱ)线性表示

    C

    α()m可由(Ⅰ)线性表示,也可由(Ⅱ)线性表示

    D

    α()m可由(Ⅰ)线性表示,但不可由(Ⅱ)线性表示


    正确答案: B
    解析:
    向量β()可由向量组α()1α()2,…,α()m线性表示,不能由向量组α()1α()2,…,α()m1线性表示,则设β()=k1α()1+k2α()2+…+km1α()m1+kmα()m,且km≠0,α()mβ()/km-k1α()1/km-…-km1α()m1/km,说明α()m可由向量组β()α()1α()2,…,α()m1,线性表示,不可由向量组α()1α()2,…,α()m1线性表示。

  • 第5题:

    单选题
    n维向量组α(→)1,α(→)2,…,α(→)s线性无关的充分条件是(  )。
    A

    α()1α()2,…,α()s中没有零向量

    B

    向量组的个数不大于维数,即s≤n

    C

    α()1α()2,…,α()s中任意两个向量的分量不成比例

    D

    某向量β()可由α()1α()2,…,α()s线性表示,且表示法唯一


    正确答案: D
    解析:
    A项,例如α()1=(1,-1,2),α()2=(2,-2,4)都是非零向量,但α()1α()2线性相关;
    B项,如A项中的例子,α()1α()2个数小于维数,但其线性相关;
    C项,例如α()1=(1,0,-1),α()2=(0,3,0),α()3=(1,3,-1)中任意两个向量的分量均不成比例,但α()1α()2α()3线性相关;
    D项,β()可由α()1α()2,…,α()s线性表示,且表示法唯一,即α()1α()2,…,α()sα()1α()2,…,α()sβ()的线性极大无关组,故α()1α()2,…,α()s线性无关。

  • 第6题:

    单选题
    设向量组Ⅰ:α(→)1,α(→)2,…,α(→)m,其秩为r;向量组Ⅱ:α(→)1,α(→)2,…, α(→)m,β(→),其秩为s,则r=s是向量组Ⅰ与向量组Ⅱ等价的(  )。
    A

    充分非必要条件

    B

    必要非充分条件

    C

    充分必要条件

    D

    既非充分也非必要条件


    正确答案: A
    解析:
    两向量组等价的充要条件是它们有相同的秩。

  • 第7题:

    单选题
    设A为m×n矩阵,齐次线性方程组AX(→)=0(→)仅有零解的充分条件是(  )。
    A

    A的列向量组线性无关

    B

    A的列向量组线性相关

    C

    A的行向量组线性无关

    D

    A的行向量组线性相关


    正确答案: C
    解析:
    因为AX()0()仅有零解的充分必要条件是A的秩r(A)=n,所以A的列向量组线性无关是AX()0()仅有零解的充分条件。

  • 第8题:

    单选题
    设向量组I:α(→)1,α(→)2,…,α(→)m,其秩为r;向量组II:α(→)1,α(→)2,…,α(→)m,β(→),其秩为s,则r=s是向量组I与向量组II等价的(  )。
    A

    充分非必要条件

    B

    必要非充分条件

    C

    充分必要条件

    D

    既非充分也非必要条件


    正确答案: C
    解析:
    两向量组等价的充要条件是它们有相同的秩。

  • 第9题:

    问答题
    设向量组α(→)1,α(→)2,…,α(→)s的秩为r>0,证明:  (1)α(→)1,α(→)2,…,α(→)s中任意r个线性无关的向量都构成它的一个极大线性无关组;  (2)若α(→)1,α(→)2,…,α(→)s中每个向量都可由其中某r个向量线性表示,则这r个向量必为α(→)1,α(→)2,…,α(→)s的一个极大线性无关组。

    正确答案:
    (1)设①:α()j1,α()j2,…,α()jrα()1,α()2,…,α()s中任意r个线性无关的向量,由于向量组的秩为r,故向量组中任意多于r个向量的向量组必线性相关,所以α()j1,α()j2,…,α()jr,α()i(i=1,2,…,s;i≠j1,j2,…,jr)线性相关,从而①为原向量组的极大线性无关组。
    (2)设①:α()j1,α()j2,…,α()jrα()1,α()2,…,α()s中的r个向量,且原向量组中每个向量都可由①线性表示,则原向量组与向量组①等价。等价向量组有相同的秩,原向量组的秩为r,所以向量组①的秩为r。又向量组①只含r个向量,故向量组①线性无关,因此由(1)的结论有①是原向量组的极大线性无关组。
    解析: 暂无解析

  • 第10题:

    单选题
    设n维列向量组α(→)1,α(→)2,…,α(→)m(m<n)线性无关,则n维列向量组β(→)1,β(→)2,…,β(→)m线性无关的充分必要条件是(  )。
    A

    向量组α()1α()2,…,α()m可以由β()1β()2,…,β()m线性表示

    B

    向量组β()1β()2,…,β()m可以由α()1α()2,…,α()m线性表示

    C

    向量组α()1α()2,…,α()m与向量组β()1β()2,…,β()m等价

    D

    矩阵A=(α()1α()2,…,α()m)与矩阵B=(β()1β()2,…,β()m)等价


    正确答案: D
    解析:
    例如α()1=(1,0,0,0),α()2=(0,1,0,0),β()1=(0,0,1,0),β()2=(0,0,0,1),各自都线性无关,但它们之间不能相互线性表示,也就不可能有等价关系,排除A、B、C项;
    D项,矩阵A与矩阵B等价,则它们的秩相等,故向量组β()1β()2,…,β()m线性无关。

  • 第11题:

    设A为m×n矩阵,则齐次线性方程组Ax=0有非零解的充分必要条件是(  )。

    A、矩阵A的任意两个列向量线性相关
    B、矩阵A的任意两个列向量线性无关
    C、矩阵A的任一列向量是其余列向量的线性组合
    D、矩阵A必有一个列向量是其余列向量的线性组合

    答案:D
    解析:

  • 第12题:

    设α1,α2,α3均为三维向量,则对任意常数k,l,向量组α1+kα3,α2+lα3线性无关是向量组α1,α2,α3线性无关的

    A.A必要非充分条件
    B.充分非必要条件
    C.充分必要条件
    D.既非充分也非必要条件

    答案:A
    解析:

  • 第13题:

    单选题
    设n维列向量组α1,α2,…,αm(m<n)线性无关,则n维列向量组β1,β2,…,βm线性无关的充分必要条件是(  ).
    A

    向量组α1,α2,…,αm可以由β1,β2,…,βm线性表示

    B

    向量组β1,β2,…,βm可以由α1,α2,…,αm线性表示

    C

    向量组α1,…,αm与向量组β1,…,βm等价

    D

    矩阵A=(α1,…,αm)与矩阵B=(β1,…,βm)β)m


    正确答案: C
    解析:
    例如α1=(1,0,0,0),α2=(0,1,0,0),β1=(0,0,1,0),β2=(0,0,0,1),各自都线性无关,但它们之间不能相互线性表示,也就不可能有等价关系,排除A、B、C项;D项,矩阵A与矩阵B等价,则它们的秩相等,故向量组β1,β2,…,βm线性无关.

  • 第14题:

    单选题
    向量组α(→)1,α(→)2,…,α(→)s线性无关的充分条件是(  )。
    A

    α()1α()2,…,α()s均不为零向量

    B

    α()1α()2,…,α()s中任意两个向量的分量不成比例

    C

    α()1α()2,…,α()s中任意一个向量均不能由其余s-1个向量线性表示

    D

    α()1α()2,…,α()s中有一部分向量线性无关


    正确答案: C
    解析:
    A项,均不为零的向量未必线性无关;
    B项,例如α()1=(1,0,0)Tα()2=(0,1,0)Tα()3=(1,1,0)T,则其中任意两个向量的分量均不成比例,但向量组α()1α()2α()3线性相关;
    C项,反证法,如果α()1α()2,…,α()s线性相关,则至少有一个向量可由其余s-1个向量线性表示,与题设矛盾;
    D项,向量组α()1α()2,…,α()s中部分向量线性无关时,未必全部向量线性无关。

  • 第15题:

    单选题
    设A为m×n矩阵,则齐次线性方程组Ax=0有非零解的充分必要条件是(  )。[2017年真题]
    A

    矩阵A的任意两个列向量线性相关

    B

    矩阵A的任意两个列向量线性无关

    C

    矩阵A的任一列向量是其余列向量的线性组合

    D

    矩阵A必有一个列向量是其余列向量的线性组合


    正确答案: D
    解析:
    线性方程组Ax=0有非零解⇔|A|=0⇔r(A)<n,矩阵A的列向量线性相关,所以矩阵A必有一个列向量是其余列向量的线性组合。

  • 第16题:

    单选题
    设向量β可以由向量组α1,α2,…,αm线性表示,但不能由向量组(Ⅰ):α1,α2,…,αm-1线性表示,记向量组(Ⅱ):α1,α2,…,αm-1,β,则(  ).
    A

    αm不能由(Ⅰ)线性表示,也不能由(Ⅱ)线性表示

    B

    αm不能由(Ⅰ)线性表示,但可由(Ⅱ)线性表示

    C

    αm可以由(Ⅰ)线性表示,也可由(Ⅱ)线性表示

    D

    αm可由(Ⅰ)线性表示,不可由(Ⅱ)线性表示


    正确答案: C
    解析:
    若αm可由向量组(Ⅰ)线性表示,则β也可由向量组(Ⅰ)线性表示,与题设矛盾,故αm不能由(Ⅰ)线性表示;由β可由α1,α2,…,αm线性表示,知存在一组数k1,k2,…,km,使β=k1α1+k2α2+…+kmαm,且km≠0,否则β就能由(Ⅰ)线性表示,所以αm可由向量组(Ⅱ).

  • 第17题:

    填空题
    已知向量组(α1,α3),(α1,α3,α4),(α2,α3,)都线性无关,而(α1,α2,α3,α4)线性相关,则向量组(α1,α2,α3,α4)的极大无关组是____.

    正确答案: 134)
    解析:
    向量组(α1,α2,α3,α4)线性相关,则其极大线性无关组最多含三个向量,又(α1,α3,α4)线性无关,故知(α1,α3,α4)为其极大线性无关组.

  • 第18题:

    单选题
    下列说法不正确的是(  )。
    A

    s个n维向量α()1α()2,…,α()s线性无关,则加入k个n维向量β()1β()2,…,β()k后的向量组仍然线性无关

    B

    s个n维向量α()1α()2,…,α()s线性无关,则每个向量增加k维分量后得到的向量组仍然线性无关

    C

    s个n维向量α()1α()2,…,α()s线性相关,则加入k个n维向量β()1β()2,…,β()k后得到的向量组仍然线性相关

    D

    s个n维向量α()1α()2,…,α()s线性无关,则减少一个向量后得到的向量组仍然线性无关


    正确答案: A
    解析:
    A项,一个线性无关组加入k个线性相关的向量,新的向量组线性相关;
    B项,线性无关组的延伸组仍为线性无关组;
    C项,线性相关组加入k个向量,无论k个向量是否相关,构成的新的向量组必是线性相关的;
    D项,线性无关组中的任意个组合均是无关的。

  • 第19题:

    单选题
    设向量组α1,α2,…,αr(Ⅰ)是向量组α1,α2,…,αs(Ⅱ)的部分线性无关组,则(  ).
    A

    (Ⅰ)是(Ⅱ)的极大线性无关组

    B

    r(Ⅰ)=r(Ⅱ)

    C

    当(Ⅰ)中的向量均可由(Ⅱ)线性表示时,r(Ⅰ)=r(Ⅱ)

    D

    当(Ⅱ)中的向量均可由(Ⅰ)线性表示时,r(Ⅰ)=r(Ⅱ)


    正确答案: B
    解析:
    题设中只给出向量组(Ⅰ)是(Ⅱ)的部分线性无关组,则不能判定其为(Ⅱ)的极大线性无关组,也没有r(Ⅰ)=r(Ⅱ),若向量组(Ⅱ)可由(Ⅰ)线性表示,则向量组(Ⅰ)和(Ⅱ)等价,即r(Ⅰ)=r(Ⅱ).