更多“若A是m×n矩阵,且m≠n,则当A的列向量组线性无关时,A的行向量组也线性无关”相关问题
  • 第1题:

    若A是m×n矩阵,且m≠n,则当R(A)=m时,非齐次线性方程组AX=b,有解


    答案:对
    解析:

  • 第2题:

    设矩阵A,B,C均为n阶矩阵,若AB=C,且B可逆,则( )


    A.矩阵C的行向量组与矩阵A的行向量组等价
    B.矩阵C的列向量组与矩阵A的列向量组等价
    C.矩阵C的行向量组与矩阵B的行向量组等价
    D.矩阵C的行向量组与矩阵B的列向量组等价


    答案:B
    解析:

  • 第3题:

    设A是nxm矩阵,B是mxn矩阵,E是n阶单位阵,若AB=E,证明B的列向量组线性无关。


    答案:
    解析:

  • 第4题:

    设A为n×m矩阵,B为m×n矩阵(m>n),且AB=E.证明:B的列向量组线性无关.


    答案:
    解析:
    【证明】首先r(B)≤min{m,n)=n,由AB=E得r(AB)=n,而,.(AB)≤r(B),所以r(B)≥n,从而r(B)=n,于是B的列向量组线性无关.

  • 第5题:

    设A为n阶方阵,rank(A)=3

    A.任意3个行向量都是极大线性无关组
    B.至少有3个非零行向量
    C.必有4个行向量线性无关
    D.每个行向量可由其余n- 1个行向量线性表示

    答案:B
    解析:

  • 第6题:

    设A为4X5矩阵,且A的行向量组线性无关,则( ).《》( )

    A.A的列向量组线性无关
    B.方程组AX=b有无穷多解
    C.方程组AX=b的增广矩阵的任意四个列向量构成的向量组线性无关
    D.A的任意4个列向量构成的向量组线性无关

    答案:B
    解析:
    方程组AX=b的行向量组线性无关,则r(A)=4,而未知数的个数为5,故方程组中含有一个自由未知数,它有无穷多解.

  • 第7题:

    单选题
    设A是m×n的非零矩阵,B是m×1非零矩阵,满足AB=0,以下选项中不一定成立的是:()
    A

    A的行向量组线性相关

    B

    A的列向量组线性相关

    C

    B的行向量组线性相关

    D

    r(A)+r(B)≤n


    正确答案: C
    解析: 由于AB=0,得到r(A)+r(B)≤n,又由于A,B都是非零矩阵,则r(A)>0,r(B)>0,得r(A)<nr(B)<n。因此A的列向量组线性相关,B的行向量组线性相关。

  • 第8题:

    单选题
    A是n阶方阵,其秩r<n,则在A的n个行向量中(  ).
    A

    必有r个行向量线性无关

    B

    任意r个行向量线性无关

    C

    任意r个行向量都构成极大线性无关向量组

    D

    任意一个行向量都可由其他任意r个行向量线性表出


    正确答案: B
    解析:
    因矩阵A的秩等于A的行向量组的秩,所以其行向量组的秩也为r,而向量组线性无关的充要条件是它所含向量个数等于它的秩,因此A中必有r个行向量线性无关.

  • 第9题:

    单选题
    下列说法不正确的是(  )。
    A

    s个n维向量α()1α()2,…,α()s线性无关,则加入k个n维向量β()1β()2,…,β()k后的向量组仍然线性无关

    B

    s个n维向量α()1α()2,…,α()s线性无关,则每个向量增加k维分量后得到的向量组仍然线性无关

    C

    s个n维向量α()1α()2,…,α()s线性相关,则加入k个n维向量β()1β()2,…,β()k后得到的向量组仍然线性相关

    D

    s个n维向量α()1α()2,…,α()s线性无关,则减少一个向量后得到的向量组仍然线性无关


    正确答案: A
    解析:
    A项,一个线性无关组加入k个线性相关的向量,新的向量组线性相关;
    B项,线性无关组的延伸组仍为线性无关组;
    C项,线性相关组加入k个向量,无论k个向量是否相关,构成的新的向量组必是线性相关的;
    D项,线性无关组中的任意个组合均是无关的。

  • 第10题:

    单选题
    设A,B为满足AB=0(→)的任意两个非零矩阵,则必有(  )。
    A

    A的列向量组线性相关,B的行向量组线性相关

    B

    A的列向量组线性相关,B的列向量组线性相关

    C

    A的行向量组线性相关,B的行向量组线性相关

    D

    A的行向量组线性相关,B的列向量组线性相关


    正确答案: D
    解析:
    设A为m×n矩阵,B为n×s矩阵,由AB=0()知r(A)+r(B)≤n,又r(A)≥1,r(B)≥1,因此r(A)<n,r(B)<n,说明A的列向量组线性相关,B的行向量组线性相关。

  • 第11题:

    设A是m×n非零矩阵,B是n×l非零矩阵,满足AB=0,以下选项中不一定成立的是:

    A. A的行向量组线性相关
    B. A的列向量组线性相关
    C. B的行向量组线性相关
    D. r(A)+r(B)≤n

    答案:A
    解析:
    A、B为非零矩阵且AB=0,由矩阵秩的性质可知r(A)+r(B)≤n,而A、B为非零矩阵,则r(A)≥1,r(B)≥1,又因r(A)m×n的列向量相关×,1≤r(B)<n,Bn×l的行向量相关,从而选项B、C、D均成立。

  • 第12题:

    设A为m×n矩阵,则齐次线性方程组Ax=0有非零解的充分必要条件是(  )。

    A、矩阵A的任意两个列向量线性相关
    B、矩阵A的任意两个列向量线性无关
    C、矩阵A的任一列向量是其余列向量的线性组合
    D、矩阵A必有一个列向量是其余列向量的线性组合

    答案:D
    解析:

  • 第13题:

    设A为s×n矩阵且A的行向量组线性无关,K为r×s矩阵。证明:B=KA行无关的充分必要条件是R(K)=r


    答案:
    解析:

  • 第14题:

    设A,B,C均为n阶矩阵,若AB=C,且B可逆,则



    A.A矩阵C的行向量组与矩阵A的行向量组等价
    B.矩阵C的列向量组与矩阵A的列向量组等价
    C.矩阵C的行向量组与矩阵B的行向量组等价
    D.矩阵C的列向量组与矩阵B的列向量组等价

    答案:B
    解析:
    对矩阵A,C分别按列分块,记A=(α1,α2,…,αn),C=(γ,γ,…,γ).  由AB=C有

      可见

    即C的列向量组可以由A的列向量组线性表出.
      因为B可逆,有CB^-1=A.类似地,A的列向量组也可由C的列向量组线性表出,因此选(B).

  • 第15题:

    设n阶方阵M的秩r(M)=r
    A.任意一个行向量均可由其他r个行向量线性表示
    B.任意r个行向量均可组成极大线性无关组
    C.任意r个行向量均线性无关
    D.必有r个行向量线性无关

    答案:D
    解析:

  • 第16题:

    单选题
    设n维列向量组α1,α2,…,αm(m<n)线性无关,则n维列向量组β1,β2,…,βm线性无关的充分必要条件是(  ).
    A

    向量组α1,α2,…,αm可以由β1,β2,…,βm线性表示

    B

    向量组β1,β2,…,βm可以由α1,α2,…,αm线性表示

    C

    向量组α1,…,αm与向量组β1,…,βm等价

    D

    矩阵A=(α1,…,αm)与矩阵B=(β1,…,βm)β)m


    正确答案: C
    解析:
    例如α1=(1,0,0,0),α2=(0,1,0,0),β1=(0,0,1,0),β2=(0,0,0,1),各自都线性无关,但它们之间不能相互线性表示,也就不可能有等价关系,排除A、B、C项;D项,矩阵A与矩阵B等价,则它们的秩相等,故向量组β1,β2,…,βm线性无关.

  • 第17题:

    单选题
    设A为4×5矩阵,且A的行向量组线性无关,则(  )。
    A

    A的列向量组线性无关

    B

    方程组AX()b()有无穷多解

    C

    方程组AX()b()的增广矩阵A(_)的任意四个列向量构成的向量组线性无关

    D

    A的任意4个列向量构成的向量组线性无关


    正确答案: B
    解析:
    方程组AX()b()的行向量组线性无关,则r(A)=4,而未知数的个数为5,故方程组中含有一个自由未知数,它有无穷多解。

  • 第18题:

    单选题
    设A为m×n矩阵,齐次线性方程组AX(→)=0(→)仅有零解的充分条件是(  )。
    A

    A的列向量组线性无关

    B

    A的列向量组线性相关

    C

    A的行向量组线性无关

    D

    A的行向量组线性相关


    正确答案: C
    解析:
    因为AX()0()仅有零解的充分必要条件是A的秩r(A)=n,所以A的列向量组线性无关是AX()0()仅有零解的充分条件。

  • 第19题:

    单选题
    设n维列向量组α(→)1,α(→)2,…,α(→)m(m<n)线性无关,则n维列向量组β(→)1,β(→)2,…,β(→)m线性无关的充分必要条件是(  )。
    A

    向量组α()1α()2,…,α()m可以由β()1β()2,…,β()m线性表示

    B

    向量组β()1β()2,…,β()m可以由α()1α()2,…,α()m线性表示

    C

    向量组α()1α()2,…,α()m与向量组β()1β()2,…,β()m等价

    D

    矩阵A=(α()1α()2,…,α()m)与矩阵B=(β()1β()2,…,β()m)等价


    正确答案: D
    解析:
    例如α()1=(1,0,0,0),α()2=(0,1,0,0),β()1=(0,0,1,0),β()2=(0,0,0,1),各自都线性无关,但它们之间不能相互线性表示,也就不可能有等价关系,排除A、B、C项;
    D项,矩阵A与矩阵B等价,则它们的秩相等,故向量组β()1β()2,…,β()m线性无关。