单选题设常系数线性齐次方程的特征方程有根r1,2=-1,r3,4=±i,则此方程的通解为(  )。A y=(c1+c2x)e-x+c3cosx+c4sinxB y=c1e-x+c2cosx+c3sinxC y=c1ex+c2cosx+c3sinxD y=c1e-x+(c2+x)cosx+c3sinx

题目
单选题
设常系数线性齐次方程的特征方程有根r1,2=-1,r3,4=±i,则此方程的通解为(  )。
A

y=(c1+c2x)ex+c3cosx+c4sinx

B

y=c1ex+c2cosx+c3sinx

C

y=c1ex+c2cosx+c3sinx

D

y=c1ex+(c2+x)cosx+c3sinx


相似考题
更多“单选题设常系数线性齐次方程的特征方程有根r1,2=-1,r3,4=±i,则此方程的通解为(  )。A y=(c1+c2x)e-x+c3cosx+c4sinxB y=c1e-x+c2cosx+c3sinxC y=c1ex+c2cosx+c3sinxD y=c1e-x+(c2+x)cosx+c3sinx”相关问题
  • 第1题:

    3阶常系数线性齐次微分方程的通解为y=________


    答案:
    解析:

  • 第2题:

    若y1(x)是线性非齐次方程y'+p(x)y=Q(x)的一个特解,则该方程的通解是下列中哪一个方程?


    答案:B
    解析:
    提示:非齐次方程的通解是由齐次方程的通解加非齐次方程的特解构成,令Q(x)=0,求对应齐次方程y'+p(x)y=0的通解。

  • 第3题:

    设线性无关函数y1、y2、y3都是二阶非齐次线性方程y"+pxy'+Qxy=fx的解,c1、c2是待定常数。则此方程的通解是:

    A. c1y1+c2y2+y3
    B.c1y1+c2y2-(c1+c3)y3
    C. c1y1+c2y2-(1-c1-c2)y3
    D.c1y1+c2y2+(1-c1-c2)y3

    答案:D
    解析:
    提示:y1-y3,y2-y3为对应齐次方程二个线性无关解,y3为非齐次方程的特解。

  • 第4题:

    已知。r1=3,r2=-3是方程y+py+q=0 (p和q是常数)的特征方程的两个根, 则该微分方程是( )。
    A. y+9y=0= 0 B. y-9y=0
    C. y+9y=0 D.y-9y=0=0


    答案:D
    解析:
    提示:先写出特征方程。

  • 第5题:

    二阶线性常系数齐次微分方程y″+2y=0的通解为____.


    答案:
    解析:

  • 第6题:

    设y1、y2是二阶常系数线性齐次方程y"+p1y'十p2y=0的两个特解,C1、C2为两个任意常数,则下列命题中正确的是()

    A.C1y1+C2y2为该方程的通解
    B.C1y1+C2y2不可能是该方程的通解
    C.C1y1+C2y2为该方程的解
    D.C1y1+C2y2不是该方程的解

    答案:C
    解析:
    由线性方程解的结构定理知应选C.仅当y1、y2为线性无关特解时,A才正确.

  • 第7题:

    填空题
    设y=ex(c1sinx+c2cosx)(c1、c2为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为____。

    正确答案: y″-2y′+2y=0
    解析:
    根据题中所给的通解y=ex(c1sinx+c2cosx)的结构可知,所求方程对应的特征根为λ12=1±i,特征方程为[λ-(1+i)][λ-(1-i)]=λ2-2λ+2=0,则所求方程为y″-2y′+2y=0。

  • 第8题:

    填空题
    若二阶常系数线性齐次微分方程y″+ay′+by=0的通解为y=(C1+C2x)ex,则非齐次方程y″+ay′+by=x满足条件y(0)=2,y′(0)=0的解为y=____。

    正确答案: -xex+x+2
    解析:
    由题意可知,r=1是已知齐次方程对应的特征方程的二重根,则该特征方程为(r-1)2=r2-2r+1=0,齐次方程为y″-2y′+y=0设y*=Ax+B为已知非齐次方程y″-2y′+y=x的特解,代入y″-2y′+y=x得0-2A+Ax+B=x,则A=1,B=2A=2。故已知非齐次方程的通解为y=(C1+C2x)ex+x+2。又y(0)=2,y′(0)=0,代入以上通解得C1=0,C2=-1。故所求方程特解为y=-xex+x+2。

  • 第9题:

    单选题
    设函数y1(x)、y2(x)、y3(x)线性无关,且都是二阶非齐次线性方程y″+p(x)y′+q(x)y=f(x)的解,又c1与c2为任意常数,则该非齐次线性方程的通解可表示为(  )。
    A

    c1y1+c2y2+y3

    B

    c1y1+c2y2-(c2+c1)y3

    C

    c1y1+c2y2-(1-c1-c2)y3

    D

    c1y1+c2y2+(1-c1-c2)y3


    正确答案: C
    解析:
    由解的结构可知,y1-y3和y2-y3是对应齐次方程y″+p(x)y′+q(x)y=0的解,且二者线性无关,故y″+p(x)y′+q(x)y=0的通解为c1(y1-y3)+c2(y2-y3),其中c1,c2为任意常数。故方程y″+p(x)y′+q(x)y=f(x)的通解为c1(y1-y3)+c2(y2-y3)+y3,即c1y1+c2y2+(1-c1-c2)y3

  • 第10题:

    单选题
    设常系数线性齐次方程的特征方程有根r1,2=-1,r3,4=±i,则此方程的通解为(  )。
    A

    y=(c1+c2x)ex+c3cosx+c4sinx

    B

    y=c1ex+c2cosx+c3sinx

    C

    y=c1ex+c2cosx+c3sinx

    D

    y=c1ex+(c2+x)cosx+c3sinx


    正确答案: D
    解析:
    由题意可知,-1为二重根,通解中应含有(c1+c2x)ex项。又r34=±i,则通项中含有c3cosx+c4sinx项,故此方程的通解为y=(c1+c2x)ex+c3cosx+c4sinx

  • 第11题:

    单选题
    已知r1=3,r2=-3是方程y″+py′+q=0(p和q是常数)的特征方程的两个根,则该微分方程是下列中哪个方程()?
    A

    y″+9y′=0

    B

    y″-9y′=0

    C

    y″+9y=0

    D

    y″-9y=0


    正确答案: D
    解析: 暂无解析

  • 第12题:

    单选题
    设y=ex(c1sinx+c2cosx)(c1、c2为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为(  )。
    A

    y″-y′+y=0

    B

    y″-2y′+2y=0

    C

    y″-2y′=0

    D

    y′+2y=0


    正确答案: A
    解析:
    根据题中所给的通解y=ex(c1sinx+c2cosx)的结构可知,所求方程对应的特征根为λ12=1±i,特征方程为[λ-(1+i)][λ-(1-i)]=λ2-2λ+2=0,则所求方程为y″-2y′+2y=0。

  • 第13题:

    设非齐次线性微分方程y′+P(x)y=Q(x)有两个不同的解y1(x),y2(x),C为任意常数,则该方程通解是( )。

    A.C[y1(x)-y2(x)]
    B.y1(x)+C[y1(x)-y2(x)]
    C.C[y1(x)+y2(x)]
    D.y1(x)+C[y1(x)+y2(x)]

    答案:B
    解析:
    因为y1(x),y2(x)是y′+P(x)y=Q(x)的两个不同的解,所以C(y1(x)-y2(x))是齐次方程y′+P(x)y=0的通解,进而y1(x)+C[y1(x)-y2(x)]是题中非齐次方程的通解。

  • 第14题:

    已知r1=3,r2=-3是方程y"+py'+qy=0(p和q是常数)的特征方程的两个根,则该微分方程是下列中哪个方程?

    A. y"+9y'=0
    B. y"-9y'=0
    C. y"+9y=0
    D. y"-9y=0

    答案:D
    解析:
    提示:利用r1=3,r2=-3写出对应的特征方程。

  • 第15题:

    已知齐次方程xy´´+y´=0有一个特解为lnx,则该方程的通解为( ).

    A.
    B.
    C.y=C(lnx+1)
    D.y=C(lnx+x)

    答案:A
    解析:

  • 第16题:

    设y1(x)、y2(x)是二阶常系数线性微分方程y″+py′+qy=0的两个线性无关的解,则它的通解为______.


    答案:
    解析:
    由二阶线性常系数微分方程解的结构可知所给方程的通解为其中C1,C2为任意常数.

  • 第17题:

    二阶常系数齐次微分方程y″-4y′+4y=0的通解为_____.


    答案:
    解析:

  • 第18题:

    已知齐次方程xy"+y’=0有一个特解为lnx,则该方程的通解为().

    • A、y=C1lnx+C2
    • B、y=C1lnx+C2X
    • C、y=C(lnx+1)
    • D、y=C(lnx+x)

    正确答案:A

  • 第19题:

    单选题
    若二阶常系数线性齐次微分方程y″+ay′+by=0的通解为y=(C1+C2x)ex,则非齐次方程y″+ay′+by=x满足条件y(0)=2,y′(0)=0的解为y=(  )。
    A

    xex+x2+2

    B

    -xex+x2+2

    C

    -xex+x+2

    D

    -xex+x


    正确答案: B
    解析:
    由题意可知,r=1是已知齐次方程对应的特征方程的二重根,则该特征方程为(r-1)2=r2-2r+1=0,齐次方程为y″-2y′+y=0设y*=Ax+B为已知非齐次方程y″-2y′+y=x的特解,代入y″-2y′+y=x得0-2A+Ax+B=x,则A=1,B=2A=2。故已知非齐次方程的通解为y=(C1+C2x)ex+x+2。又y(0)=2,y′(0)=0,代入以上通解得C1=0,C2=-1。故所求方程特解为y=-xex+x+2。

  • 第20题:

    单选题
    设函数y1,y2,y3都是线性非齐次方程y″+p(x)y′+q(x)y=f(x)的不相等的特解,则函数y=(1-c1-c2)y1+c1y2+c2y3(  )。(c1,c2为任意常数)
    A

    是所给方程的通解

    B

    不是方程的解

    C

    是所给方程的特解

    D

    可能是方程的通解,但一定不是其特解


    正确答案: C
    解析:
    由于y1,y2,y3都是y″+p(x)y′+q(x)y=f(x)的不相等的特解,则y2-y1,y3-y1是它对应的齐次方程的特解,故y=(1-c1-c2)y1+c1y2+c2y3=y1+c1(y2-y1)+c2(y3-y1)是非齐次方程y″+p(x)y′+q(x)y=f(x)的解,但是,由于无法确定y2-y1与y3-y1是否为线性无关,故不能肯定它是y″+p(x)y′+q(x)y=f(x)的通解。

  • 第21题:

    问答题
    设y1=x,y2=x+e2x,y3=x(1+e2x)是二阶常系数线性非齐次方程的特解,求该方程及其通解。

    正确答案:
    由题意可知,y2-y1=e2x,y3-y1=xe2x是对应齐次方程的两个线性无关的解,齐次方程的通解为y(_)=(C1+C2x)e2x,且特征方程有二重根r1,2=2,则特征方程为(r-2)2=r2-4r+4=0,则齐次方程为y″-4y′+4y=0。
    令所求非齐次方程为y″-4y′+4y=f(x),将其解之一y1=x代入得f(x)=4x-4,则所求方程为y″-4y′+4y=4x-4,又齐次方程的通解为y(_)=(C1+C2x)e2x,且非齐次方程的通解为y=(C1+C2x)e2x+x。
    解析: 暂无解析

  • 第22题:

    填空题
    设y1=3+x2,y2=3+x2+e-x是某二阶线性非齐次微分方程的两个特解,且相应的齐次方程有一个解为y3=x,则该方程的通解为____。

    正确答案: y=3+x2+c1x+c2e-x
    解析:
    由解的叠加原理可知,y2-y1=ex是原方程对应齐次方程的一个特解,可知该特解与题中给出的y3=x线性无关,则原方程的通解为y=3+x2+c1x+c2ex

  • 第23题:

    单选题
    设非齐次线性微分方程y′+P(x)y=Q(x)有两个不同的解y1(x),y2(x),C为任意常数,则该方程的通解是(  )。
    A

    C[y1(x)-y2(x)]

    B

    y1(x)+C[y1(x)-y2(x)]

    C

    C[y1(x)+y2(x)]

    D

    y1(x)+C[y1(x)+y2(x)]


    正确答案: B
    解析:
    由题意可知,y(_)=y1(x)-y2(x)是y′+P(x)y=0的一个解,则y′+P(x)y=0的通解是C[y1(x)-y2(x)]。故所求方程通解为y1(x)+C[y1(x)-y2(x)]

  • 第24题:

    单选题
    设y=ex(c1sinx+c2cosx)(c1、c2为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为(  )。
    A

    y″+2y′+2y=0

    B

    y″-2y′+2y=0

    C

    y″-2y′-2y=0

    D

    y″+2y′+2y=0


    正确答案: A
    解析:
    根据题中所给的通解y=ex(c1sinx+c2cosx)的结构可知,所求方程对应的特征根为λ12=1±i,特征方程为[λ-(1+i)][λ-(1-i)]=λ2-2λ+2=0,则所求方程为y″-2y′+2y=0。