参考答案和解析
正确答案: y=ex(c1cosx+c2sinx)+ex
解析:
原微分方程为y″-2y′+2y=ex,其对应的齐次方程为y″-2y′+2y=0,该齐次方程的特征方程为r2-2r+2=0,解得r12=1±i。故原方程对应的齐次方程的通解为y(_)=ex(c1cosx+c2sinx)。设y*=Aex为原方程的特解,将其代入原方程可解得A=1。故原方程的通解为y=ex(c1cosx+c2sinx)+ex
更多“微分方程y″-2y′+2y=ex的通解为____。”相关问题
  • 第1题:

    微分方程(1+ 2y)xdx + (1+ x2 )dy = 0的通解为;

    (以上各式中,c 为任意常数)


    答案:B
    解析:

  • 第2题:

    微分方程y''+2y=0的通解是:

    A. y=
    Bsin2x
    C. y=
    Dcosx


    答案:D
    解析:

  • 第3题:

    微分方程(1+ 2y)xdx + (1+x2)dy=0的通解是( )。


    答案:B
    解析:
    提示:可分离变量方程,解法同1-122题。

  • 第4题:

    微分方程y′′-2y=ex的特解形式应设为( )

    A.y*=Aex
    B.y*=Axex
    C.y*=2ex
    D.y*=ex

    答案:A
    解析:
    【考情点拨】本题考查了二阶线性微分方程的特解形式的知识点.【应试指导】由方程知,其特征方程为,r2-2=0,有两个特征根 .又自由项f(x)=ex,λ=1不是特征根,故特解y*可设为Aex.

  • 第5题:

    下列微分方程是线性微分方程的是()。

    • A、x(y’)2+y=ex
    • B、xy"+xy’+y=cosx
    • C、y3y"+y’+2y=0
    • D、y"+2y"+y2=0

    正确答案:B

  • 第6题:

    单选题
    函数(C1,C2为任意数)是微分方程y″-y′-2y=0的(  )。[2014年真题]
    A

    通解

    B

    特解

    C

    不是解

    D

    解,既不是通解又不是特解


    正确答案: D
    解析:
    微分方程y″-y′-2y=0的特征方程为:r2-r-2=0,解特征方程得:r1=2,r2=-1。故其通解为:y=C1e2x+C2e-x,即题中函数是方程的解,但不是通解或特解。

  • 第7题:

    单选题
    设y=ex(c1sinx+c2cosx)(c1、c2为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为(  )。
    A

    y″-y′+y=0

    B

    y″-2y′+2y=0

    C

    y″-2y′=0

    D

    y′+2y=0


    正确答案: B
    解析:
    根据题中所给的通解y=ex(c1sinx+c2cosx)的结构可知,所求方程对应的特征根为λ12=1±i,特征方程为[λ-(1+i)][λ-(1-i)]=λ2-2λ+2=0,则所求方程为y″-2y′+2y=0。

  • 第8题:

    填空题
    已知y1=x为微分方程x2y″-2xy′+2y=0之一解,则此方程的通解为____。

    正确答案: y=c1x+c2x2
    解析:
    设与y2是与y1线性无关的一个特解,则y2′=u+xu′,y2″=2u′+xu″,其代入x2y″-2xy′+2y=0中,得2x2u′+x3u″-2xu-2x2u′+2xu=0,即x3u″=0。u″=0,得u=x,即y2=x2。故原方程的通解为y=c1x+c2x2

  • 第9题:

    单选题
    以为特解的二阶线性常系数齐次微分方程是()。
    A

    y"-2y'-3y=0

    B

    y"+2y'-3y=0

    C

    y"-3y'+2y=0

    D

    y"-2y'-3y=0


    正确答案: C
    解析: 暂无解析

  • 第10题:

    单选题
    设y=ex(c1sinx+c2cosx)(c1、c2为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为(  )。
    A

    y″+2y′+2y=0

    B

    y″-2y′+2y=0

    C

    y″-2y′-2y=0

    D

    y″+2y′+2y=0


    正确答案: A
    解析:
    根据题中所给的通解y=ex(c1sinx+c2cosx)的结构可知,所求方程对应的特征根为λ12=1±i,特征方程为[λ-(1+i)][λ-(1-i)]=λ2-2λ+2=0,则所求方程为y″-2y′+2y=0。

  • 第11题:

    单选题
    微分方程y″-2y′+2y=ex的通解为(  )。
    A

    y=ex(c1cosx+c2sinx)+ex

    B

    y=ex(c1cosx+c2sinx)-ex

    C

    y=ex(c1cosx-c2sinx)+ex

    D

    y=ex(c1cosx-c2sinx)-ex


    正确答案: D
    解析:
    原微分方程为y″-2y′+2y=ex,其对应的齐次方程为y″-2y′+2y=0,该齐次方程的特征方程为r2-2r+2=0,解得r1,2=1±i。故原方程对应的齐次方程的通解为y(_)=ex(c1cosx+c2sinx)。设y*=Aex为原方程的特解,将其代入原方程可解得A=1。故原方程的通解为y=ex(c1cosx+c2sinx)+ex

  • 第12题:

    求微分方程y"-3y'+2y=2xe^x的通解.


    答案:
    解析:
    【解】由方程y-3y'+2y=0的特征方程解得特征根,所以方程y-3y'+2y=0的通解为
    设y-3y'+2y=2xe^x的特解为y^*=x(ax+b)e^x,则(y^*)'=(ax^2+2ax+bx+b)e^x(y^*)=(ax^2+4ax+bx+2a+2b)e^x
    代入原方程,解得a=-1,b=-2,故特解为:y^*=x(-x-2)e^x,所以原方程的通解为

  • 第13题:

    微分方程y''+2y=0的通解是( )。


    答案:D
    解析:
    提示:这是二阶常系数线性齐次方程,特征方程为

  • 第14题:

    二阶线性常系数齐次微分方程y″+2y=0的通解为____.


    答案:
    解析:

  • 第15题:

    具有待定特解形式为y=A1x+A2+B1ex的微分方程是下列中哪个方程()?

    • A、y″+y′-2y=2+ex
    • B、y″-y′-2y=4x+2ex
    • C、y″-2y′+y=x+ex
    • D、y″-2y′=4+2ex

    正确答案:B

  • 第16题:

    以为特解的二阶线性常系数齐次微分方程是()。

    • A、y"-2y'-3y=0
    • B、y"+2y'-3y=0
    • C、y"-3y'+2y=0
    • D、y"-2y'-3y=0

    正确答案:B

  • 第17题:

    单选题
    具有待定特解形式为y=A1x+A2+B1ex的微分方程是下列中哪个方程()?
    A

    y″+y′-2y=2+ex

    B

    y″-y′-2y=4x+2ex

    C

    y″-2y′+y=x+ex

    D

    y″-2y′=4+2ex


    正确答案: C
    解析: 暂无解析

  • 第18题:

    单选题
    以y1=ex,y2=e-3x为特解的二阶线性常系数齐次微分方程是(  )。[2012年真题]
    A

    y″-2y′-3y=0

    B

    y″+2y′-3y=0

    C

    y″-3y′+2y=0

    D

    y″-2y′-3y=0


    正确答案: D
    解析:
    因y1=exy2=e-3x是特解,故r1=1,r2=-3是特征方程的根,因而特征方程为r2+2r-3=0。故二阶线性常系数齐次微分方程是:y″+2y′-3y=0。

  • 第19题:

    单选题
    (2012)以y1=ex,y2=e-3x为特解的二阶线性常系数齐次微分方程是:()
    A

    y″-2y′-3y=0

    B

    y″+2y′-3y=0

    C

    y″-3y′+2y=0

    D

    y″+2y′+y=0


    正确答案: D
    解析: 暂无解析

  • 第20题:

    单选题
    函数y=C1ex+C2e-2x+xex满足的一个微分方程是(  )。
    A

    y″-y′-2y=3xex

    B

    y″-y′-2y=3ex

    C

    y″+y′-2y=3xex

    D

    y″+y′-2y=3ex


    正确答案: D
    解析:
    由函数y=C1ex+C2e-2x+xex结合解的结构可知,y1=ex及y2=e-2x是所求非齐次方程对应齐次方程的解,y3=xex是所求非齐次方程的一个特解。故对应特征方程的根为r1=1,r2=-2,特征方程为(r-1)(r+2)=r2+r-2=0。则齐次方程为y″+y′-2y=0。假设所求方程为y″+y′-2y=f(x),将y3=xex代入得f(x)=3ex。则所求方程为y″+y′-2y=3ex

  • 第21题:

    单选题
    微分方程y″-2y′+2y=ex的通解为(  )。
    A

    y=ex(c1cosx-c2sinx)+ex

    B

    y=ex(c1cos2x-c2sin2x)+e

    C

    y=ex(c1cosx+c2sinx)+ex

    D

    y=ex(c1cos2x+c2sin2x)+ex


    正确答案: B
    解析:
    原微分方程为y″-2y′+2y=ex,其对应的齐次方程为y″-2y′+2y=0,该齐次方程的特征方程为r2-2r+2=0,解得r12=1±i。故原方程对应的齐次方程的通解为y(_)=ex(c1cosx+c2sinx)。设y*=Aex为原方程的特解,将其代入原方程可解得A=1。故原方程的通解为y=ex(c1cosx+c2sinx)+ex