更多“袋中有五个乒乓球,标号分别是1、2、3、4、5,从中任取3个,X表示取出的3个球中最大的号码,写出X的分布律与分布函数.”相关问题
  • 第1题:

    一个袋子中有5个球,编号为1,2,3,4,5,同时从中任取3个,以X表示取出的3个球中的最大号码,求随机变量X的概率分布.


    答案:
    解析:
    依题意,随机变量X只能取值3,4,5;且p{X=

  • 第2题:

    盒子中有5个产品,其中恰有3个合格品.从盒子中任取2个,记X为取出的合格品个数.求
    (1)X的概率分布;
    (2)EX.


    答案:
    解析:

    则X的分布律为

  • 第3题:

    袋中有8个乒乓球,其中5个白色球,3个黄色球,一次从中任取2个乒乓球,
    则取出的2个球均为白色球的概率为().

    A.5/8
    B.5/14
    C.5/36
    D.5/56

    答案:B
    解析:

  • 第4题:

    有甲、乙两个口袋,两袋中都有3个白球2个黑球,现从甲袋中任取一球放入乙袋,再从乙袋中任取4个球,设4个球中的黑球数用X表示,求X的分布律.


    答案:
    解析:

  • 第5题:

    袋中有1个红球、2个黑球与3个白球,现有放回地从袋中取两次,每次取一个球.以X,Y,Z分别表示两次取球所取得的红球、黑球与白球的个数.
    (Ⅰ)求P{X=1|Z=0};
    (Ⅱ)求二维随机变量(X,Y)的概率分布.


    答案:
    解析:

  • 第6题:

    袋中有l个红色球,2个黑色球与三个白球,现有放回地从袋中取两次,每次取一球,以 X,Y,Z分别表示丽次取球所取得的红球、黑球与白球的个数。
    (1)求P{X=1|Z=0};
    (2)求二维随机变量(X,Y)的概率分布。


    答案:
    解析:

  • 第7题:

    一袋中有四只球,编号为1,2,3,4,从袋中一次取出两只球,用x表示取出的两只球的最大号码数,则

    A.0.4
    B.0.5
    C.0.6
    D.0.7

    答案:B
    解析:

  • 第8题:

    设随机变量X的概率分布为P(X=1)=0.2,P(X=2)=0.3,P(X=3)=0.5,写出其分布函数F(x)。


    正确答案: 当x<1时,F(x)=0;当1≤x<2时,F(x)=0.2;
    当2≤x<3时,F(x)=0.5;当3≤x时,F(x)=1

  • 第9题:

    袋中有4个白球2个黑球,今从中任取3个球,则至少一个黑球的概率为()

    • A、4/5
    • B、1
    • C、1/5
    • D、1/3

    正确答案:A

  • 第10题:

    袋中有大小相同的黑球7只,白球3只,每次从中任取一只,有放回抽取,记首次抽到黑球时抽取的次数为X,则P{X=10}=()。


    正确答案:0.39*0.7

  • 第11题:

    问答题
    3.设在15个同类型的零件中有2个是次品,从中任取3次,每次取1个,取后不放回.以X表示取出的次品的个数,求X的分布律.

    正确答案:
    解析:

  • 第12题:

    问答题
    38.当袋中有2个白球3个红球.现从袋中随机地抽取2个球,以X表示取到的红球个数。求X的分布律.

    正确答案:
    解析:

  • 第13题:

    一袋中有5个乒乓球,其中4个白球,1个红球,从中任取2个球的不可能事件是()

    A.{2个球都是白球}
    B.{2个球都是红球}
    C.{2个球中至少有1个白球}
    D.{2个球中至少有1个红球}

    答案:B
    解析:
    袋中只有1个红球,从中任取2个球都是红球是不可能发生的.

  • 第14题:

    一个袋子中有5个球,编号为l,2,3,4,5,同时从中任取3个,以X表示取出的3个球中的最大号码,求随机变量X的概率分布.


    答案:
    解析:
    依题意,随机变量x只能取值3,4,5;且P{X=3}=

  • 第15题:

    设袋中有5个球,其中3个新球,2个旧球,从中任取3个球,用X表示3个球中的新球个数,求X的分布律与分布函数.


    答案:
    解析:

  • 第16题:

    有三个盒子,第一个盒子有4个红球1个黑球,第二个盒子有3个红球2个黑球,第三个盒子有2个红球3个黑球,如果任取一个盒子,从中任取3个球,以X表示红球个数.
      (1)写出X的分布律;(2)求所取到的红球数不少于2个的概率.


    答案:
    解析:

  • 第17题:

    袋中有8个乒乓球,其中5个白色球,3个黄色球,从中一次任取2个乒乓球,则取出的2个球均为白色球的概率为《》( )


    答案:B
    解析:

  • 第18题:

    袋中有l个红球、2个黑球与3个白球,现有放回地从袋中取两次,每次取一个球,以X,y,Z分别表示两次取球所取得的红球、黑球与白球的个数。
    (1)求
    (2)求二维随机变量(X,Y)的概率分布。


    答案:
    解析:

  • 第19题:

    设F1(x)与F2(x)分别为随机变量X1与X2的分布函数。为使F(x)=aF1(x)-bF2(x)成为某一随机变量的分布函数,则a与b分别是:()

    • A、a=3/5,b=-2/5
    • B、a=2/3,b=2/3
    • C、a=-1/2,b=3/2
    • D、a=1/2,b=-2/3

    正确答案:A

  • 第20题:

    五张卡片上分别写有号码1,2,3,4,5。随即抽取其中三张,设随机变量X表示取出三张卡片上的最大号码。写出X的所有可能取值


    正确答案:显然是:3,4,5。

  • 第21题:

    设F1(x)与F1(x)分别为随机变量X1与X2的分布函数,若函数F(x)=aF1(x)-bF2(x)是某随机变量的分布函数,则必有()

    • A、a=3/5,b=-2/5
    • B、a=-3/5,b=2/5
    • C、a=1/2,b=3/2
    • D、a=1/2,b=-3/2

    正确答案:A

  • 第22题:

    问答题
    袋中有四个球,分别标有数字1,2,2,3,从袋中任取一球后,不放回,再取第二次,分别以X、Y记为第一次、第二次取得球上标有的数字.    求:(1)(X,Y)的分布律.      (2)(X,Y)的边缘分布律.      (3)X与Y是否独立?

    正确答案:
    解析:

  • 第23题:

    单选题
    设F1(x)与F2(x)分别为随机变量X1与X2的分布函数。为使F(x)=aF1(x)-bF2(x)成为某一随机变量的分布函数,则a与b分别是:()
    A

    a=3/5,b=-2/5

    B

    a=2/3,b=2/3

    C

    a=-1/2,b=3/2

    D

    a=1/2,b=-2/3


    正确答案: C
    解析: 暂无解析

  • 第24题:

    问答题
    五张卡片上分别写有号码1,2,3,4,5。随即抽取其中三张,设随机变量X表示取出三张卡片上的最大号码。写出X的所有可能取值

    正确答案: 显然是:3,4,5。
    解析: 暂无解析