更多“如图,边长为a的正方形ABCD中,点E是对角线BD上的一点,且BE=BC,点P在EC上,PM⊥BD于M,PN⊥BC于N,则PM+PN=________。 ”相关问题
  • 第1题:

    (6分)如图,点P为矩形ABCD边BC上一点(不包括端点),E为BC延长线上一点,CQ为∠DCE的角平分线,连接AP,PQ,使AP⊥PQ。求证:当AB=BC时,存在AP=PQ。


    答案:
    解析:

    ∴AP=PQ。

  • 第2题:

    如图,平行四边形ABCD,∠ADC的角平分线DE交BC于E,且AD=14,DC=9,则BE/EC的值为()。

    A.1/3
    B.4/9
    C.5/9
    D.2/3

    答案:C
    解析:
    AD∥BC,则∠ADE=∠DEC,又∠ADE=∠CDE,所以△CDE为等腰三角形,EC=CD=9,

  • 第3题:

    如图所示,梯形ABCD的两条对角线AD、BC相交于O,EF平行于两条边且过O点。现已知AB=6,CD=18。问EF的长度为多少?


    A. 8.5
    B. 9
    C. 9.5
    D. 10

    答案:B
    解析:
    解题指导: 18*BF/BD=6*DF/BD, BF/DF=1:3, OF/CD=1:4, OE/CD=1:4, EF=CD/2=9,故答案为B。

  • 第4题:

    下图中ABCD为边长10米的正方形路线,E为AD中点,F为与B相距3米的BC上一点,从E点到F点有小路EGHF,小路的每一段都与AB垂直或平行,且GH相距2米。甲经EABF从E点匀速运动到F点用时9秒,则其以相同速度经EGHF从E点匀速运动到F点用时多少秒?

    A.12
    B.10
    C.9
    D.8

    答案:D
    解析:
    第一步,本题考查行程问题,属于基本行程类。
    第二步,E为AD中点,则EA=10÷2=5(米),甲经过EABF从E点到F点所走路程为AE+AB+BF=5+10+3=18(米);标记HF的转弯点为M、N,那么甲经EGHF从E点到F点所走路程为EG+GH+HM+MN+NF=(EG+HM+NF)+GH+MN=10+2+(5+2-3)=16(米)。
    第三步,两种路线速度相同,路程比为18∶16=9∶8,那么所用时间之比为9∶8,第一种路线用时9秒,那么第二种路线用时8秒。
    因此,选择D选项。

  • 第5题:

    设P是圆x2+y2=2上的一点,该圆在点P的切线平行于直线x+y+2=0,则点P的坐标为



    答案:E
    解析:

  • 第6题:

    如图6-9所示,在△ABC中,AD⊥BC于D点,BD=CD,若BC=6,AD=5,则图中阴影部分的面积为( )

    A.3
    B.7.5
    C.15
    D.30
    E.5.5

    答案:B
    解析:

  • 第7题:

    如右图所示,梯形ABCD的对角线AC丄BD,其中AD=1/2,BC=3,AC=2,BD=2.1,则梯形ABCD的髙AE的值是()。



    答案:C
    解析:
    由ACXBD=(AD+BC)XAE=>AE=42/45。

  • 第8题:

    如图6,AB是⊙E的直径,C是直线AB上一点,CD切⊙E于点D,且∠A=25o,则∠C= ______度。


    答案:
    解析:
    40

  • 第9题:

    分别用分析法,综合法证明如下命题。
    命题:如图:三角形ABC的角B和角C的角平分线相交于点0,过点O作平行于底边BC的直线,交AB边于点D,交AC边于点E,则DE=BD+EC。



    答案:
    解析:
    证明:(1)分析法证明:要证DE=BD+EC.
    需证OD=BD,OE=CE,
    需证∠DBO=∠DOB,∠ECO=∠EOC,
    显然由已知OB为∠DBC的平分线,OC为∠ECB的平分线,且DE∥BC,所以∠DBO=∠DOB,∠ECO=∠EOC,所以命题成立。
    (2)综合法证明:
    ∵OB为∠DBC的平分线,OC为1ECB的平分线,且DE∥BC,
    ∴∠DBO=∠OBC=∠DOB,∠EC0=∠BC0=∠EOC,
    ∴BD=OD.EC=OE。
    又∵DE=OD+DE
    ∴DE=BD+EC。

  • 第10题:

    对于航行于A、B两级航区的船,储备浮力在数值上的关系是()

    • A、A≤B
    • B、A≥B
    • C、A=B
    • D、无确定关系

    正确答案:B

  • 第11题:

    若正方形ABCD的边长为4,E为BC边上一点,BE=3,M为线段AE上的一点,射线BM交正方形的一边于点F,且BF=AE,则BM的长为5/2或12/5。


    正确答案:错误

  • 第12题:

    判断题
    若正方形ABCD的边长为4,E为BC边上一点,BE=3,M为线段AE上的一点,射线BM交正方形的一边于点F,且BF=AE,则BM的长为5/2或12/5。
    A

    B


    正确答案:
    解析: 暂无解析

  • 第13题:

    如图:已知圆0,点P在圆外,D,E在圆上,PE交圆于C,PD与圆相切,G为CE上一点且满足PG=PD,连接DG并延长交圆于A,作弦AB⊥EP,垂足为F。

    (1)求证:AB为圆的直径;
    (2)若AC=BD,AB=5,求弦DE的长。


    答案:
    解析:
    (1)证明:∵PG=PD,∴∠PGD=∠PDG,又∵∠AGF=∠PGD,∠PDG=∠ABD,∴∠AGF=∠ABD,∴∠ADB=∠AFP=90°,∴AB为圆的直径。

  • 第14题:

    如右图所示,梯形ABCD的对角线AC⊥BD,其中AD=1/2,BC=3,AC=14/5 ,BD=2.1.问梯形ABCD的高AE的值是:

     
     

    A. 43/24
    B. 1.72
    C. 42/25
    D. 1.81

    答案:C
    解析:
    解题指导: C。

  • 第15题:

    在边长为1的正方形ABCD中,AC与BD相交于O,以A、B、C、D分别为圆心,以对角线长的一半为半径画圆弧与正方形的边相交,如图,则图中阴影部分的面积为多少?(π=3.14)


    A.0.43
    B.0.57
    C.0.64
    D.0.71

    答案:C
    解析:

  • 第16题:

    已知正六边形ABCDEF的边长为a,PA为过点A而垂直于正六边形所在平面M的垂线,且PA=a,求:
    (I)点P到AB、BC、CD各边的距离;
    (II)PD与平面M所成的角.


    答案:
    解析:
    (I)如图所示,
    24题答案图
    ∵PA上平面M,∴PA上BC,
    ∴点P到AB的距离为a.过A作BC的垂线交CB的延长线于G,连结PG,
    ∴BC上平面APG,即PG⊥AB,


    ∵PA上平面M,
    ∴AC是PC在平面M上的射影,
    又∵AD是正六边形ABCDEF外接圆的直径,
    ∴∠ACD=90o.
    因此AC⊥CD,所以CD⊥平面ACP,即PC是P到CD的距离,

    因此P到CD的距离为2a.
    (Ⅱ)设PD与DA所夹的角为口,在Rt△PAD中,

    (VI)为PD与平面M所夹的角.

  • 第17题:

    ,梯形ABCD的上底与下底分别为5,7,E为AC与BD的交点,MN过点E且平行于AD.则MN=


    答案:C
    解析:

  • 第18题:

    如右图所示,在△ABC:中,D为AC的中点,E在BC上,且 BE : EC=1 : 2,AE与BD交于F。则△BEF与四边形EFDC 的面积之比为( )。

    A. 1 : 3 B. 1 : 4
    C. 1 : 5 D. 1 : 6


    答案:C
    解析:

  • 第19题:

    已知△ABC的三边长AC=3,BC=4,AB=5,P为AB边上任意一点,则CP→ (BA→-BC→)的最大值为(  )

    A、8
    B、9
    C、12
    D、15

    答案:B
    解析:

  • 第20题:

    如图,在一张矩形纸片ABCD中,AB=4,BC=8。点E,F分别在AD,BC上,将纸片ABCD沿直线EF折叠,点C落在AD上的一点日处,点D落在G处,有以下四个结论:①四边形CFHE是菱形;②EC平分∠DCH;③线段BF的取值范围为3≤BF≤4;④当点H与点A重合时, 。以上结论中,你认为正确的有( )个。

    A.1
    B.2
    C.3
    D.4

    答案:C
    解析:

  • 第21题:

    已知BD为正方形ABCD对角线,M为BD上不同于B、D的一个动点,以AB为边在ABCD侧边作等边三角形ABE,以BM为边在BD左侧作等边三角形BMF,连接EF、AM、CM,当AM+BM+CM最短时,∠BCM=( )。

    A.150
    B.450
    C.300
    D.600

    答案:A
    解析:

  • 第22题:

    圆内接四边形ABCD的一组对边AD、BC的延长线相交于户,对角线AC、BD相交于Q点,则图中共有相似三角形()。

    • A、4对
    • B、2对
    • C、1对
    • D、3对

    正确答案:A

  • 第23题:

    ABCD是边长为L的正方形的四个顶点,若在A、B、C、D四个顶点处分别放置带电量为q的正点电荷,则A、B、C、D四点电荷在正方形对角线交点上产生的合场强的大小为()。


    正确答案:0