更多“若正方形ABCD的边长为4,E为BC边上一点,BE=3,M为线段AE上一点,射线BM交正方形的一边于点F,且BF ”相关问题
  • 第1题:

    平行四边形ABCD如右图所示,E为AB上的一点,F、G分别是AC和DE、DB的交点。若AB=3AE,则四边形BEFG与ABCD的面积之比是:

    A.2︰7
    B.3︰13
    C.4︰19
    D.5︰24

    答案:D
    解析:
    第一步,本题考查几何问题,属于平面几何类,用赋值法解题。
    第二步,题干没给出具体数值,可以采用赋值法解题。赋值AB=3,平行四边形ABCD的高为4,则AE=1;由于△AEF相似于△CDF,则两个三角形的高之比为AE:DC=1︰3,可知△AEF的高为
    4*1/4=1。△ABG与△CDG全等,则△ABG的高为4÷2=2。
    第三步,四边形BEFG面积=△ABG面积-△AEF面积=

    四边形ABCD面积=3×4=12,两者之比为 ︰12=5︰24。
    因此,选择D选项。

  • 第2题:

    图6-18是一个边长为10的正方形和半圆所组成的图形,其中P为半圆周的中点,Q为正方形一边上的中点,则阴影部分的面积为( )




    答案:C
    解析:

  • 第3题:

    如图,在一张矩形纸片ABCD中,AB=4,BC=8。点E,F分别在AD,BC上,将纸片ABCD沿直线EF折叠,点C落在AD上的一点日处,点D落在G处,有以下四个结论:①四边形CFHE是菱形;②EC平分∠DCH;③线段BF的取值范围为3≤BF≤4;④当点H与点A重合时, 。以上结论中,你认为正确的有( )个。

    A.1
    B.2
    C.3
    D.4

    答案:C
    解析:

  • 第4题:

    下图中ABCD为边长10米的正方形路线,E为AD中点,F为与B相距3米的BC上一点,从E点到F点有小路EGHF,小路的每一段都与AB垂直或平行,且GH相距2米。甲经EABF从E点匀速运动到F点用时9秒,则其以相同速度经EGHF从E点匀速运动到F点用时多少秒?

    A.12
    B.10
    C.9
    D.8

    答案:D
    解析:
    第一步,本题考查行程问题,属于基本行程类。
    第二步,E为AD中点,则EA=10÷2=5(米),甲经过EABF从E点到F点所走路程为AE+AB+BF=5+10+3=18(米);标记HF的转弯点为M、N,那么甲经EGHF从E点到F点所走路程为EG+GH+HM+MN+NF=(EG+HM+NF)+GH+MN=10+2+(5+2-3)=16(米)。
    第三步,两种路线速度相同,路程比为18∶16=9∶8,那么所用时间之比为9∶8,第一种路线用时9秒,那么第二种路线用时8秒。
    因此,选择D选项。

  • 第5题:

    已知△ABC的三边长AC=3,BC=4,AB=5,P为AB边上任意一点,则CP→ (BA→-BC→)的最大值为(  )

    A、8
    B、9
    C、12
    D、15

    答案:B
    解析: