更多“MATLAB命令中求函数f(x)的一阶导数用“diff(f(x),x)”()。”相关问题
  • 第1题:

    执行一下命令>>symsaxy>>f=(sin(a*x)+y2*cos(x));>>dfdx=diff(f),表示()。

    A、对y求阶微分

    B、对a求一阶微分

    C、对x求一阶微分

    D、对x求二阶微分


    参考答案:D

  • 第2题:

    下列命题正确的是()

    A.函数f(x)的导数不存在的点,一定不是f(x)的极值点
    B.若x0为函数f(x)的驻点,则x0必为f(x)的极值点
    C.若函数f(x)在点x0处有极值,且f'(x0)存在,则必有f'(x0)=0
    D.若函数f(x)在点x0处连续,则f'(x0)一定存在

    答案:C
    解析:
    根据函数在点x0处取极值的必要条件的定理,可知选项C是正确的.

  • 第3题:

    设随机变量X的密度函数为f(x)=
      (1)求常数A;(2)求X在内的概率;(3)求X的分布函数F(x).


    答案:
    解析:

  • 第4题:

    (Ⅰ)设函数u(x),ν(x)可导,利用导数定义证明[u(x)ν(x)]’=u’(x)ν(x)+u(x)ν’(x);
      (Ⅱ)设函数u1(x),u2(x),…,un(x)可导,f(x)=u1(x)u2(x)…un(x),写出f(x)的求导公式.


    答案:
    解析:
    【解】(Ⅰ)令f(x)=u(x)ν(x),由导数定义知


  • 第5题:

    已知曲线,其中函数f(t)具有连续导数,且f(0)=0,f'(t)>0(0).若曲线L的切线与x轴的交点到切点的距离恒为1,求函数f(t)的表达式,并求以曲线L及x轴和y轴为边界的区域的面积.


    答案:
    解析:

  • 第6题:

    已知函数f(x,y)=x+y+xy,曲线C:x^2+y^2+xy=3,求f(x,y)在曲线C上的最大方向导数.


    答案:
    解析:
    【分析】函数在一点处沿梯度方向的方向导数最大,进而转化为条件最值问题
    函数f(x,y)=x+y+xy在点(x,y)处的最大方向导数为

    构造拉格朗日函数

    (2)-(1)得(y-x)(2+λ)=0
    若y=x,则y=x=±1,若λ=-2,则x=-1,y=2或x=2,y=-1.
    把两个点坐标代入中,f(x,y)在曲线C上的最大方向导数为3.
    【评注】此题有一定新意,关键是转化为求条件极值问题.

  • 第7题:

    设f(x)是R上的可导函数,且f(x)>0。若f′(x)-3x---2f(x)=0,且f(0)=1,求f(x)。


    答案:
    解析:

  • 第8题:

    已知向量m=(sinx,cosx),n=(cosx,cosx),f(x)=m*n,
    (1)求函数f(x)的最小正周期:
    (2)若f(x)≥1,求f(x)的取值范围。


    答案:
    解析:

  • 第9题:

    若f″(x)存在,则函数y=ln[f(x)]的二阶导数为:()

    • A、(f″(x)f(x)-[f′(x)]2)/[f(x)]2
    • B、f″(x)/f′(x)
    • C、(f″(x)f(x)+[f′(x)]2)/[f(x)]2
    • D、ln″[f(x)]·f″(x)

    正确答案:A

  • 第10题:

    判断题
    若z=f(x,y)在(x0,y0)处的两个一阶偏导数存在,则函数z=f(x,y)在(x0,y0)处可微
    A

    B


    正确答案:
    解析: 暂无解析

  • 第11题:

    单选题
    若f″(x)存在,则函数y=ln[f(x)]的二阶导数为:()
    A

    (f″(x)f(x)-[f′(x)]2)/[f(x)]2

    B

    f″(x)/f′(x)

    C

    (f″(x)f(x)+[f′(x)]2)/[f(x)]2

    D

    ln″[f(x)]·f″(x)


    正确答案: B
    解析: 暂无解析

  • 第12题:

    问答题
    若函数f(x,y,z)恒满足关系式f(tx,ty,tz)=tkf(x,y,z)就称为k次齐次函数,验证k次齐次函数满足关系式(其中f存在一阶连续偏导数)x∂f/∂x+y∂f/∂y+z∂f/∂z=kf(x,y,z)。

    正确答案:
    为简化计算,可令u=tx,v=ty,w=tz,则f(u,v,w)=tkf(x,y,z),两边对t求导,得x∂f/∂u+y∂f/∂v+z∂f/∂w=ktk-1f(x,y,z),则上式对一切实数t都成立。令t=1,得x∂f/∂x+y∂f/∂y+z∂f/∂z=kf(x,y,z)。
    解析: 暂无解析

  • 第13题:

    函数厂(x)具有连续的二阶导数,且f″(0)≠0,则x=0( )。

    A.不是函数f(x)的驻点
    B.一定是函数f(x)的极值点
    C.一定不是函数f(x)的极值点
    D.是否为函数f(x)的极值点,还不能确定

    答案:D
    解析:
    由极值的必要条件可知,若f(x)在x=0处可导,且x=0是f(x)的极值点,则必有f′(0)=0。由题干无法确定f′(0)是否等于0,因此不能确定x=0是否为函数f(x)的极值点。

  • 第14题:

    设连续型随机变量X的分布函数为F(x)=
      (1)求常数A,B;(2)求X的密度函数f(x);(3)求P


    答案:
    解析:

  • 第15题:

    设函数f(x)具有二阶导数,g(x)=f(0)(1-x)+f(1)x,则在区间[0,1]上



    A.A当f'(x)≥0时,f(x)≥g(x)
    B.当f'(x)≥0时,f(x)≤g(x)
    C.当f"(x)≥0时,f(x)≥g(x)
    D.当f"(x)≥0时,f(x)≤g(x)

    答案:D
    解析:
    由于g(0)=f(0),g(1)=f(1),则直线y=f(0)(1-x)+f(1)x过点(0,f(0))和(1,f(1)),当f"(x)≥0时,曲线y=f(x)在区间[0,1]上是凹的,曲线y=f(x)应位于过两个端点(0,f(0))和(1,f(1))的弦y=f(0)(1-x)+f(1)x的下方,即f(x)≤g(x)故应选(D).
    (方法二)令F(x)=f(x)-g(x)=f(x)-f(0)(1-x)-f(1)x,
    则 F'(x)=f'(x)+f(0)-f(1),F"(x)=f"(x).当f"(x)≥0时,F"(x)≥0,则曲线y=F(x)在区间[0,1]上是凹的.又F(0)=F(1)=0,从而,当x∈[0,1]时F(x)≤0,即f(x)≤g(x),故应选(D).
    (方法三)令F(x)=f(x)-g(x)=f(x)-f(0)(1-x)-f(1)x,

    则 F(x)=f(x)[(1-x)+x]-f(0)(1-x)-f(1)x

    =(1-x)[f(x)-f(0)]-x[f(1)-f(x)]
       =x(1-x)f'(ξ)-x(1-x)f'(η) (ξ∈(0,x),η∈(x,1))
       =x(1-x)[f'(ξ)-f'(η)]
      当f"(x)≥0时,f'(x)单调增,f'(ξ)≤f'(η),从而,当x∈[0,1]时F(x)≤0,即f(x)≤g(x),故应选(D).

  • 第16题:

    设函数z=f(xy,yg(x)),其中函数f具有二阶连续偏导数,函数g(x)可导且在x=1处取得极值g(1)=1.求


    答案:
    解析:

    所以,令x=y=1,且注意到g(1)=1,g'(1)=0,得

  • 第17题:

    设函数f(x)在定义域I上的导数大于零,若对任意的x0∈I,曲线y=f(x)在点(x0,f(x0))处的切线与直线x=x0及x轴所围成区域的面积恒为4,且f(0)=2,求f(x)的表达式.


    答案:
    解析:

  • 第18题:

    设函数f(x)在定义域,上的导数大于零,若对任意的
    处的切线与直线x≈x0及戈轴所围成区域的面积恒为4,且f(0)=2,求f(x)的表达式。


    答案:
    解析:

  • 第19题:

    求函数.f(x)=x2?2x在x=0处的n阶导数,f(n)(O)。


    答案:
    解析:
    函数乘积求高阶导数,莱布尼茨公式。

  • 第20题:

    若z=f(x,y)在(x0,y0)处的两个一阶偏导数存在,则函数z=f(x,y)在(x0,y0)处可微


    正确答案:错误

  • 第21题:

    单选题
    设函数y=f(x)具有二阶导数,且f′(x)=f(π/2-x),则该函数满足的微分方程为(  )。
    A

    f″(x)+f(x)=0

    B

    f′(x)+f(x)=0

    C

    f″(x)+f′(x)=0

    D

    f″(x)+f′(x)+f(x)=0


    正确答案: A
    解析:
    由f′(x)=f(π/2-x),两边求导得f″(x)=-f′(π/2-x)=-f[π/2-(π/2-x)]=-f(x),即f″(x)+f(x)=0。

  • 第22题:

    问答题
    若F(x)是f(x)的一个原函数,G(x)是1/f(x)的一个原函数,且F(x)G(x)=-1,f(0)=1,求f(x)。

    正确答案:
    由原方程F(x)G(x)=-1,两边对x求导得F′(x)G(x)+F(x)G′(x)=0。
    又由于F(x)、G(x)分别是f(x)和1/f(x)的原函数,则F′(x)=f(x),G′(x)=1/f(x),且G(x)=-1/F(x)。
    代入F′(x)G(x)+F(x)G′(x)=0,得-f(x)[1/F(x)]+F(x)[1/f(x)]=0,即[F(x)]2=[f(x)]2
    故F(x)=±f(x),F′(x)=±f′(x),即f′(x)=±f(x)。解得f(x)=C1ex及f(x)=C2e-x
    又f(0)=1,得C1=C2=1,则f(x)=e±x
    解析: 暂无解析

  • 第23题:

    填空题
    设函数y=f(x)具有二阶导数,且f′(x)=f(π/2-x),则该函数满足的微分方程为____。

    正确答案: f″(x)+f(x)=0
    解析:
    由f′(x)=f(π/2-x),两边求导得f″(x)=-f′(π/2-x)=-f[π/2-(π/2-x)]=-f(x),即f″(x)+f(x)=0。

  • 第24题:

    单选题
    设函数y=f(x)具有二阶导数,且f′(x)=f(π/2-x),则该函数满足的微分方程为(  )。
    A

    f′(x)+f(x)=0

    B

    f′(x)-f(x)=0

    C

    f″(x)+f(x)=0

    D

    f″(x)-f(x)=0


    正确答案: D
    解析:
    由f′(x)=f(π/2-x),两边求导得f″(x)=-f′(π/2-x)=-f[π/2-(π/2-x)]=-f(x),即f″(x)+f(x)=0。