更多“若n阶方阵A与B相似,则A与B一定等价。”相关问题
  • 第1题:

    设AB为门阶方阵,若AB等价,则AB相似


    答案:错
    解析:

  • 第2题:

    设A为三阶可逆方阵,则( )与A等价。

    A.
    B.
    C.
    D.

    答案:B
    解析:
    利用可逆阵与单位阵等价。

  • 第3题:

    设A,B为n阶矩阵,考虑以下命题:①若A,B为等价矩阵,则A,B的行向量组等价②若行列式.,则A,B为等价矩阵③若都只有零解,则A,B为等价矩阵④若A,B为相似矩阵,则的解空间的维数相同以上命题中正确的是( ).

    A.①③
    B.②④
    C.②③
    D.③④

    答案:D
    解析:

  • 第4题:

    若n阶矩阵A,B有共同的特征值,且各有n个线性无关的特征向量,则( )

    A.A与B相似
    B.
    C.A=B
    D.A与B不一定相似,但|A|=|B|


    答案:A
    解析:

  • 第5题:

    设A与B都是n阶方阵,且,证明AB与BA相似.


    答案:
    解析:

  • 第6题:

    设 A为 n 阶方阵,B是 A 经过若干次初等行变换得到的矩阵,则下列结论正确的是( )。

    A.|A|=|B|

    B.|A|≠|B|

    C.若|A|=0,则一定有 |B|=0

    D.若 |A|> 0,则一定有 |B|> 0

    答案:C
    解析:
    本题主要考查矩阵的初等变换及行列式的主要性质。对矩阵可以做如下三种变换:(1)对调两行,记作

    (2)以数 乘某一行的所有元素,记作 。(3)把某一行所有元素的 k 倍加到另一行对应的元素上去,记作

    若方阵 A 经过以上三种初等变换得到方阵 B,则对应的行列式的关系依次为 |A|=–|B|,k|A|=|B|,|A|=|B|,即 |A|=a|B|, a∈R (a ≠ 0)。所以 |A|=0 时,必有 |B|=0。C项正确。

    A、B、D三项:均为干扰项。与题干不符,排除

  • 第7题:

    设A,B都是n阶矩阵,若有可逆矩阵P使得P-1AP=B,则称矩阵A与矩阵B()。

    • A、等价
    • B、相似
    • C、合同
    • D、正交

    正确答案:B

  • 第8题:

    填空题
    设A、B、C均为n阶方阵,若A=CTBC,且|B|<0,则|A|____。

    正确答案: ≤0
    解析:
    由行列式性质可知|A|=|CT|·|B|·|C|=|C|2·|B|≤0。

  • 第9题:

    单选题
    设A为n阶方阵,若对任意n×m(m≥n)矩阵B都有AB=0,则A=(  )。
    A

    0

    B

    1

    C

    2

    D

    3


    正确答案: A
    解析:
    取基本单位向量组为ε()1ε()2,…,ε()n
    当m=n时,由对任意B都有AB=0,则对B=(ε()1ε()2,…,ε()n)=En也成立,即AE=0,故A=0。
    当m>n时,取B=(ε()1ε()2,…,ε()nB()1)=(EnB()1),则由AB=A(EnB()1)=0,知AEn=0,故A=0。

  • 第10题:

    单选题
    设A、B、C均为n阶方阵,若A=CTBC,且|B|<0,则|A|(  )。
    A

    =0

    B

    >0

    C

    ≤0

    D

    <0


    正确答案: B
    解析:
    由行列式性质可知|A|=|CT|·|B|·|C|=|C|2·|B|≤0。

  • 第11题:

    设A,B是n(n≥2)阶方阵,则必有( ).



    答案:C
    解析:

  • 第12题:

    设n阶矩阵A与对角矩阵相似,则().

    A.A的n个特征值都是单值
    B.A是可逆矩阵
    C.A存在n个线性无关的特征向量
    D.A一定为n阶实对称矩阵

    答案:C
    解析:
    矩阵A与对角阵相似的充分必要条件是其有n个线性无关的特征向量,A有n个单特征值只是其可对角化的充分而非必要条件,同样A是实对称阵也是其可对角化的充分而非必要条件,A可逆既非其可对角化的充分条件,也非其可对角化的必要条件,选(C).

  • 第13题:

    设A、B均为n阶方阵,则下列式子中错误的是( ).



    答案:D
    解析:

  • 第14题:

    设n阶矩阵A与B等价, 则必须


    答案:D
    解析:

  • 第15题:

    若n阶方阵A满足|A|=b(b≠0,n≥2),而A*是A的伴随矩阵,则行列式|A*|等于(  )。

    A.bn
    B.bn-1
    C.bn-2
    D.bn-3

    答案:B
    解析:

  • 第16题:

    设A为n阶方阵,A*是A的伴随矩阵,则||A|A*|等于( ).



    答案:D
    解析:

  • 第17题:

    问答题
    试证若n阶矩阵A满足A2-A=2E,则A一定相似于对角矩阵。

    正确答案:
    设λ是矩阵A的特征值,则矩阵f(A)=A2-A-2E的特征多项式为f(λ)=λ2-λ-2,所以有矩阵A的特征值只可能是2或-1。
    ①当λ=-1是A的特征值,而λ=2不是A的特征值,则有,A-2E,≠0,即(A-2E)可逆。由A2-A-2E=0得(A-2E)(A+E)=0,所以有(A-2E)-1(A-2E)(A+E)=(A-2E)-1·0,即A+E=0,A=-E。因此A相似与对角矩阵-E。
    ②当λ=2是A的特征值,而λ=-1不是A的特征值,同理于①,可得矩阵A相似与对角矩阵2E。
    ③当λ=2和λ=-1都是A的特征值,由(A-2E)(A+E)=0知r(A-2E)+r(A+E)≤n。又r(A-2E)+r(A+E)=r(2E-A)+r(A+E)≥r(2E-A+A+E)=r(3E)=n,所以r(A-2E)+r(A+E)=n,即[n-r(A-2E)]+[n-r(A+E)]=n。故两方程组(A-2E)X()=0()和(A+E)X()=0()的基础解系所含解向量的个数之和为n,所以A有n个线性无关的特征向量,故其可相似于对角矩阵。
    解析: 暂无解析

  • 第18题:

    单选题
    设A,B都是n阶矩阵,若有可逆矩阵P使得P-1AP=B,则称矩阵A与矩阵B()。
    A

    等价

    B

    相似

    C

    合同

    D

    正交


    正确答案: B
    解析: 由相似矩阵的定义知B正确。故选B。

  • 第19题:

    填空题
    设A为n阶方阵,若对任意n×m(m≥n)矩阵B都有AB=0,则A=____.

    正确答案: 0
    解析:
    取基本单位向量组为ε1,ε2,…εn
    当m=n时,由对任意B都有AB=0,则对B=(ε1,ε2,…εn)=En也成立,即AE=0,故A=0.
    当m>n时,取B=(ε1,ε2,…εn,B1)=(En,B1),则由AB=A(En,B1)=0,知AEn=0,故A=0.

  • 第20题:

    单选题
    设A为n阶方阵,B是A经过若干次矩阵的初等变换后所得到的矩阵,则有(  )。
    A

    |A|=|B|

    B

    |A|≠|B|

    C

    若|A|=0,则一定有|B|=0

    D

    若|A|>0,则一定有|B|>0


    正确答案: A
    解析:
    矩阵A经过若干次初等变换后得到矩阵B,则存在可逆矩阵P,Q使得B=PAQ,因此|B|=|PAQ|=|P|·|A|·|Q|,若|A|=0,则必有|B|=|P|·|A|·|Q|=0成立。