更多“若无向图G = (V, E) 中含n个顶点,则至少需要有()条边,才能保证图G一定是连通的。”相关问题
  • 第1题:

    G是一个非连通无向图,共有28条边,则该图至少有()个顶点。

    A.7

    B、8

    C、9

    D、10


    参考答案:C
    解释:8个顶点的无向图最多有8*7/2=28条边,再添加一个点即构成非连通无向图,故至少有9个顶点。

  • 第2题:

    若无向连通图G具有n个顶点,则以下关于图G的叙述中,错误的是( )。

    A.c的边数一定多于顶点数

    B.G的生成树中一定包含n个顶点

    C.从c中任意顶点出发一定能遍历图中所有顶点

    D.G的邻接矩阵一定是n阶对称矩阵


    正确答案:A
    解析:设无向连通图G如下图(a)所示,其邻接矩阵如图(b)所示。cl无向连通图的生成树是该图的极小连通子图,如果图中有n个顶点,则生成树包含n个顶点、n-1条边。如果在图的生成树上任意加一条边,则必然形成回路。无向连通图可能正好是一棵生成树,如下图(c)所示,其边数小于顶点数。无向图的邻接矩阵一定是对称矩阵,因为顶点i与j之间的边即表示i到j的边,也表示j到i的边,如图(b)所示。

  • 第3题:

    G是一个非连通无向图,共有28条边,则该图至少有(50)个顶点。

    A.6

    B.7

    C.8

    D.9


    正确答案:D
    解析:8个顶点有7+6+…1=28条边时刚好构成全连通图,所以若一个非连通无向图有28条边则至少有9个顶点。

  • 第4题:

    若非连通无向图G含有21条边,则G的顶点个数至少为 ( )

    A.7

    B.8

    C.21

    D.22


    正确答案:B

  • 第5题:

    G是一个非连通无向图,共有28条边,则该图至少有()个顶点。

    A.8
    B.9
    C.6
    D.7

    答案:B
    解析:
    n个顶点的无向图中,边数e≤n(n-l)/2,将e=28代入,有n≥8,现已知无向图非连通,则n=9。

  • 第6题:

    n个顶点的强连通有向图G,最多有()条边,最少有()边。强连通图即是任何两个顶点之间有路径相通,当所有结点在一个环上时,必定是强连通图。


    正确答案:n(n-1),n

  • 第7题:

    连通图G的生成树是一个包含G的所有n个顶点和n-1条边的子图。


    正确答案:错误

  • 第8题:

    如果G1是一个具有n个顶点的连通无向图,那么G1最多有()条边,G1最少有()条边。如果G2是一个具有n个顶点的强连通有向图,那么G2最多有()条边,G2最少有()条边。


    正确答案:n(n-1)/2;n-1;n(n-1);n

  • 第9题:

    设无向图G中顶点数为n,则图G至少有()条边,至多有()条边;若G为有向图,则至少有()条边,至多有()条边。


    正确答案:0;n(n-1)/2;0;n(n-1)

  • 第10题:

    填空题
    设G为具有N个顶点的无向连通图,则G至少有()条边。

    正确答案: N-1
    解析: 暂无解析

  • 第11题:

    单选题
    G是一个非连通无向图,共有28条边,则该图至少有()个顶点。
    A

    7

    B

    8

    C

    9

    D

    10


    正确答案: B
    解析: 暂无解析

  • 第12题:

    填空题
    n个顶点的强连通有向图G,最多有()条边,最少有()边。强连通图即是任何两个顶点之间有路径相通,当所有结点在一个环上时,必定是强连通图。

    正确答案: n(n-1),n
    解析: 暂无解析

  • 第13题:

    若G是一个具有36条边的非连通无向图(不含自回路和多重边),则图G至少有(64)个顶点。

    A.11

    B.10

    C.9

    D.8


    正确答案:B
    解析:根据无向图的定义,有n个顶点的无向图至多有n(n-1)/2条边。试题告诉我们,共有36条边,则n(n-1)/2=36解这个方程可得n=9。但这样求得的9个顶点是连通的,而试题要求是非连通图,所以,再增加一个孤立点,因此至少有10个顶点。

  • 第14题:

    下列叙述中正确的是( )。A.连通分量是无向图中的极小连通子图 B.生成树是连通图的一个极大连通子图 C.若一个含有n个顶点的有向图是强连通图,则该图中至少有n条弧 D.若一个含有n个顶点的无向图是连通图,则该图中至少有n条边


    正确答案:C
    有向图是一个二元组,其中   1.V是非空集合,称为顶点集。   2.E是V×V的子集,称为边集。   直观来说,若图中的每条边都是有方向的,则称为有向图。有向图中的边是由两个顶点组成的有序对,有序对通常用尖括号表示,如表示一条有向边,其中vi是边的始点,vj是边的终点。代表两条不同的有向边。如果在有向图中任意两个顶点都是连通的,则称图为连通图。因此如果有向图是连通图,则该图中至少有n条弧。 一个无向图(undirected graph)是一个二元组,其中:   1.E是非空集合,称为顶点集。   2.V是E中元素构成的无序二元组的集合,称为边集。   直观来说,若一个图中每条边都是无方向的,则称为无向图。

  • 第15题:

    下列命题正确的是(58)。

    A.G为n阶无向连通图,如果G的边数m≥n-1,则G中必有圈

    B.二部图的顶点个数一定是偶数

    C.若无向图C的任何两个不相同的顶点均相邻,则G为哈密尔顿图

    D.3-正则图的顶点个数可以是奇数,也可以是偶数


    正确答案:C
    解析:n阶无向连通图至少有n-1条边,但n阶无向连通图不一定有圈,所以A错误。二部图顶点个数也可以为奇数,可知D错误。由握手定理可知,n阶k-正则图中,边数m=kn/2,因而当k为奇数时,n必为偶数。所以D错误。所以选C。

  • 第16题:

    若G是一个具有36条边的非连通无向图(不含自回路和多重边),则图G至少有()个顶点。

    A.11
    B.10
    C.9
    D.8

    答案:B
    解析:
    要使图的顶点数最少,应该尽量构造一个完全图,具有36条边的无向完全图的顶点数是9,又因为图示非连通的,所以再加一个孤立的顶点即可。所以至少有10个顶点。

  • 第17题:

    要使得具有n个顶点的有向图成为强连通图,至少需要有多少条边?


    正确答案:要使得具有n个顶点的有向图成为强连通图,至少需要有n条边。

  • 第18题:

    有n个顶点的有向图,至少需要()条弧才能保证是连通的。


    正确答案:n-1

  • 第19题:

    设G为具有N个顶点的无向连通图,则G至少有()条边。


    正确答案:N-1

  • 第20题:

    29条边的有向连通图,至少有()个顶点,至多有()个顶点,有29条边的有向非连通图,至少有()个顶点。


    正确答案:6,29,7

  • 第21题:

    问答题
    要使得具有n个顶点的有向图成为强连通图,至少需要有多少条边?

    正确答案: 要使得具有n个顶点的有向图成为强连通图,至少需要有n条边。
    解析: 暂无解析

  • 第22题:

    填空题
    设无向图G中顶点数为n,则图G至少有()条边,至多有()条边;若G为有向图,则至少有()条边,至多有()条边。

    正确答案: 0,n(n-1)/2,0,n(n-1)
    解析: 图的顶点集合是有穷非空的,而边集可以是空集;边数达到最多的图称为完全图,在完全图中,任意两个顶点之间都存在边。

  • 第23题:

    填空题
    有n个顶点的有向图,至少需要()条弧才能保证是连通的。

    正确答案: n-1
    解析: 暂无解析

  • 第24题:

    填空题
    如果G1是一个具有n个顶点的连通无向图,那么G1最多有()条边,G1最少有()条边。如果G2是一个具有n个顶点的强连通有向图,那么G2最多有()条边,G2最少有()条边。

    正确答案: n(n-1)/2,n-1,n(n-1),n
    解析: 暂无解析