设函数f(x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有f'(x)>0, f''(x)>0,则在(-∞,0)内必有: A. f'(x)>0, f''(x)>0 B.f'(x)<0, f''(x)>0 C. f'(x)>0, f''(x)<0 D. f'(x)<0, f''(x)<0

题目
设函数f(x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有f'(x)>0, f''(x)>0,则在(-∞,0)内必有:
A. f'(x)>0, f''(x)>0 B.f'(x)<0, f''(x)>0
C. f'(x)>0, f''(x)<0 D. f'(x)<0, f''(x)<0


相似考题
参考答案和解析
答案:B
解析:
提示:已知f(x)在(-∞,+∞)上是偶函数,函数图像关于y轴对称,已知函数在(0,+∞),f'(x)>0, f''(x)>0,表明在(0,+∞)上函数图像为单增且凹向,由对称性可知,f(x)在(-∞,0)单减且凹向,所以f'(x)<0, f''(x)>0。
更多“设函数f(x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有f'(x)>0, f''(x)>0,则在(-∞,0)内必有: ”相关问题
  • 第1题:

    设函数f(x)在点x=a处可导,则函数|f(x)|在点x=a处不可导的充分条件是( )

    A.f(a)=0且f′(a)=0
    B.f(a)=0且f′(a)≠0
    C.f(a)>0且f′(a)>
    D.f(a)<0且f′(a)<

    答案:B
    解析:

  • 第2题:

    函数y=f(x) 在点x=x0处取得极小值,则必有:
    A. f'(x0)=0
    B.f''(x0)>0
    C. f'(x0)=0且f''(x0)>0
    D.f'(x0)=0或导数不存在


    答案:D
    解析:
    提示:已知y=f(x)在x=x0处取得极小值,但在题中f(x)是否具有一阶、二阶导数,均未说明,从而答案A、B、C就不一定成立。答案D包含了在x=x0可导或不可导两种情况,如y= x 在x=0处导数不存在,但函数y= x 在x=0取得极小值。

  • 第3题:

    已知f(x)在(-∞,+∞)上是偶函数,若f‘(-x0)=-k≠0,则f‘(x0)等于:
    A.-K
    B.K
    C. -1/K
    D.1/K


    答案:B
    解析:
    提示:利用结论“偶函数的导函数为奇函数”计算。
    f(-x) =f(x),求导-f'(-x)=f'(x),即f'(-x)=-f(x)。将x=x0代入,得f’(-x0) =-f‘(x0),解出f‘(x0)=K。

  • 第4题:

    设f(x)是R上的可导函数,且f(x)>0。若f′(x)-3x---2f(x)=0,且f(0)=1,求f(x)。


    答案:
    解析:

  • 第5题:

    设函数f(x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有f'(x)>0,f''(x)>0,则在(-∞,0)内必有( )。
    A. f'(x)>0,f''(x)>0 B. f(x) 0
    C. f'(x)>0,f''(x)


    答案:B
    解析:
    提示:f(x)在(-∞,+∞)上是偶函数,f'(x)在(-∞,+∞)在上是奇函数,f''(x)在(-∞,+∞)在上是偶函数,故应选B。

  • 第6题:

    设函数在(a,b)内连续,则在(a,b)内()。

    • A、f(x)必有界
    • B、f(x)必可导
    • C、f(x)必存在原函数
    • D、D.必存在一点ξ∈(a,,使f(ξ)=0

    正确答案:C

  • 第7题:

    设f(x)在(-a,a)(a>0)上连续,F(x)是f(x)的一个原函数,则当f(x)是偶函数时,下面结论正确的是()。

    • A、F(x)是偶函数
    • B、F(x)是奇函数
    • C、F(x)可能是奇函数,也可能是偶函数
    • D、F(x)是否是偶函数不能确定

    正确答案:D

  • 第8题:

    单选题
    设函数f(x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有f'(x)>0,f"(x)>0,则在(-∞,0)内必有()。
    A

    f'(x)>0,f"(x)>0

    B

    f'(x)<0,f"(x)>0

    C

    f'(x)>O,f"(x)<0

    D

    f'(x)<0,f"(x)<0


    正确答案: A
    解析: 暂无解析

  • 第9题:

    单选题
    (2008)设函数f(x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有f′(x)>0,f″(x)>0则在(-∞,0)内必有:()
    A

    f′(x)>0,f″(x)>0

    B

    f′(x)<0,f″(x)>0

    C

    f′(x)>0,f″(x)<0

    D

    f′(x)<0,f″(x)<0


    正确答案: C
    解析: 暂无解析

  • 第10题:

    判断题
    设偶函数f(x)在区间(-1,1)内具有二阶导数,且f″(0)=f′(0)+1,则f(0)为f(x)的一个极小值。
    A

    B


    正确答案:
    解析: 暂无解析

  • 第11题:

    单选题
    设f(x)=-f(-x),x∈(-∞,+∞),且在(0,+∞)内f′(x)>0,f″(x)<0,则在(-∞,0)内(  )。
    A

    f′(x)>0,f″(x)>0

    B

    f′(x)>0,f″(x)<0

    C

    f′(x)<0,f″(x)>0

    D

    f′(x)<0,f″(x)<0


    正确答案: D
    解析:
    f(x)=-f(-x)⇔f(-x)=-f(x),则f(x)为奇函数。又f(x)可导,则f′(x)为偶函数,f″(x)存在且为奇函数,故在(-∞,0)内,f′(x)>0,f″(x)>0。

  • 第12题:

    单选题
    设f(x)在(-a,a)是连续的偶函数,且当0()
    A

    f(0)是f(x)在(-a,A.的极大值,但不是最大值

    B

    B.f(0)是f(x)在(-a,的最小值

    C

    C.f(0)足f(x)在(-a,的极大值,也是最大值

    D

    f(0)是曲线y=f(x)的拐点的纵坐标


    正确答案: B
    解析: 暂无解析

  • 第13题:

    设函数f(x)在(-∞,+∞)上是奇函数,在(0,+∞)内有f'(x)<0, f''(x)>0,则在(-∞,0)内必有:
    A. f'>0, f''>0 B.f'<0, f''<0
    C. f'<0, f''>0 D. f'>0, f''<0


    答案:B
    解析:
    提示:已知f(x)在(-∞,+∞)上是奇函数,图形关于原点对称,由已知条件f(x)在(0,+∞),f'<0单减, f''>0凹向,即f(x)在(0,+∞)画出的图形为凹减,从而可推出关于原点对称的函数在(-∞,0)应为凸减,因而f'<0, f''<0。

  • 第14题:

    设函数 f (x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有 f ' (x) >0, f '' (x) >0,
    则在(- ∞ ,0)内必有:
    (A) f ' > 0, f '' > 0 (B) f ' 0
    (C) f ' > 0, f ''


    答案:B
    解析:
    解:选 B。
    偶函数的导数是奇函数,奇函数的导数是偶函数。
    f (x)是偶函数,则 f '(x)是奇函数,当x > 0时, f '(x) > 0,则x f '(x)是奇函数,则 f ''(x)是奇函数,当x > 0时, f '(x) > 0,则x 0;
    点评:偶函数的导数是奇函数,奇函数的导数是偶函数。

  • 第15题:

    若f'(x)<0(a<x≤b)且f(b)>0,则在(a,b)内必有()

    A.f(x)>0
    B.f(x)<0
    C.f(x)=0
    D.f(x)符号不定

    答案:A
    解析:
    因为f'(x)<0x∈(a,b),所以f(x)单调减少x∈(a,b).
    又f(b)>0,所以f(x)>0x∈(a,b).

  • 第16题:

    设f(x)在(-a,a)是连续的偶函数,且当0
    A. f(0)是f(x)在(-a,a)的极大值,但不是最大值
    B. f(0)是f(x)在(-a,a)的最小值
    C. f(0)是f(x)在(-a,a)的极大值,也是最大值
    D. f(0)是曲线y=f(x)的拐点的纵坐标


    答案:C
    解析:
    提示:f(x)是偶函数,当-a

  • 第17题:

    设偶函数f(x)在区间(-1,1)内具有二阶导数,且f″(0)=f′(0)+1,则f(0)为f(x)的一个极小值。


    正确答案:正确

  • 第18题:

    设f(x)在(-a,a)是连续的偶函数,且当0()

    • A、f(0)是f(x)在(-a,A.的极大值,但不是最大值
    • B、B.f(0)是f(x)在(-a,的最小值
    • C、C.f(0)足f(x)在(-a,的极大值,也是最大值
    • D、f(0)是曲线y=f(x)的拐点的纵坐标

    正确答案:C

  • 第19题:

    设函数f(x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有f'(x)>0,f"(x)>0,则在(-∞,0)内必有()。

    • A、f'(x)>0,f"(x)>0
    • B、f'(x)<0,f"(x)>0
    • C、f'(x)>O,f"(x)<0
    • D、f'(x)<0,f"(x)<0

    正确答案:B

  • 第20题:

    单选题
    (2006)设f(x)在(-∞,+∞)上是奇函数,在(0,+∞)上f′(x)0,则在(-∞,0)上必有:()
    A

    f′>0,f″>0

    B

    f′<0,f″<0

    C

    f′<0,f″>0

    D

    f′>0,f″<0


    正确答案: B
    解析: 暂无解析

  • 第21题:

    问答题
    设函数f(x)在闭区间[0,1]上可微,对于[0,1]上的每一个x,函数f(x)的值都在开区间(0,1)内,且f′(x)≠1,证明在(0,1)内有且仅有一个x,使得f(x)=x。

    正确答案:
    首先证明存在性。
    作辅助函数F(x)=f(x)-x,由题设00。
    根据连续函数介值定理,在(0,1)上至少存在一点ξ∈(0,1),使得F(ξ)=0。即f(ξ)-ξ=0。
    用反证法证明唯一性。
    设012<1,且f(x1)=x1,f(x2)=x2,即F(x1)=F(x2)=0。
    根据罗尔定理知,存在x0∈(x1,x2)⊂(0,1)使得F′(x0)=0,即f′(x0)=1,这与题目中f′(x)≠1相矛盾,故在(0,1)内有且仅有一个x,使得f(x)=x。
    解析: 暂无解析

  • 第22题:

    单选题
    设在区间(-∞,+∞)内函数f(x)>0,且当k为大于0的常数时有f(x+k)=1/f(x)则在区间(-∞,+∞)内函数f(x)是(  )。
    A

    奇函数

    B

    偶函数

    C

    周期函数

    D

    单调函数


    正确答案: C
    解析:
    对该函数由f(x+2k)=1/f(x+k)=f(x),故f(x)是周期函数。

  • 第23题:

    问答题
    设f(x)在[a,+∞)上连续,在(a,+∞)内可导,且f′(x)>k>0(k为常数),又f(a)<0,证明方程f(x)=0在(a,a-f(a)/k)内有唯一实根。

    正确答案:
    由题设条件f(a)<0,k>0可得a-f(a)/k>a。
    令b=a-f(a)/k,根据拉格朗日中值定理得
    f(b)=f(a)+f′(ξ)(b-a)=f(a)+f′(ξ)[-f(a)/k]=-f(a)[f′(ξ)/k-1]>0,(a<ξk)
    由零点定理得f(x)=0在(a,b)内至少有一个实根。又f′(x)>0,即f(x)单调增加。故f(x)=0在(a,b)内仅有一个实根。
    解析: 暂无解析