假设某厂商的短期生产函数为Q=35L+8L2-L3 求:(1)该企业的平均产量函数和边际产量函数。 (2)如果企业使用的生产要素的数量为/=6,是否处于短期生产的合理区间?为什么?

题目
假设某厂商的短期生产函数为Q=35L+8L2-L3 求:(1)该企业的平均产量函数和边际产量函数。 (2)如果企业使用的生产要素的数量为/=6,是否处于短期生产的合理区间?为什么?


相似考题
更多“假设某厂商的短期生产函数为Q=35L+8L2-L3 求:(1)该企业的平均产量函数和边际产量函数。 (2)如果企业使用的生产要素的数量为/=6,是否处于短期生产的合理区间?为什么?”相关问题
  • 第1题:

    已知一垄断企业成本函数为:TC=5Q2 +20Q+1000,产品的需求函数为: Q=140-P,

    求:(1)利润最大化时的产量、价格和利润,

    (2)厂商是否从事生产?


    参考答案:(1)利润最大化的原则是:MR=MC     因为TR=P·Q=[140-Q]·Q=140Q-Q2     所以MR=140-2Q       MC=10Q+20      所以 140-2Q = 10Q+20        Q=10        P=130    
    (2)最大利润=TR-TC= -400    
    (3)因为经济利润-400,出现了亏损,是否生产要看价格与平均变动成本的关系。平均变动成本AVC=VC/Q=(5Q2 +20Q)/Q=5Q+20=70,而价格是130大于平均变动成本,所以尽管出现亏损,但厂商依然从事生产,此时生产比不生产亏损要少。

  • 第2题:

    假定某厂商的边际成本函数MC=3Q2-30Q+100,且生产10单位产量时的总成本为1000。求:(1)固定成本的值。(2)总成本函数、总可变成本函数,以及平均成本函数、平均可变成本函数。


    参考答案:

    (1)固定成本为500。

     


    (1)

    (2)

  • 第3题:

    假定在短期生产的固定成本给定的条件下,某厂商使用一种可变要素L生产一种产品 (1)该生产函数的平均产量为极大值时的/使用量。 (2)该生产函数的平均可变成本为极小值时的总产量。


    答案:
    解析:
    (1)该生产函数的平均产量为: AQ(L)=-0. 1L2 +2L+20 该生产函数的平均产量求导可得: -0. 2L+2 =0 即L=10时,平均产量为极大值。 (2)根据短期可变要素的平均产量APL和平均可变成本AVC( Q)之间的关系式可知,在L=10时,平均产量APL达到极大值,意味着平均可变成本AVC(Q)达到极小值。 此时Q(L)=-0.1 xl03 +2 xl02 +20 xl0 =300,即总产量Q=300。

  • 第4题:

    已知生产函数Q=f(L,K)=2KL-0.5L2-0.5K2,假定厂商目前处于短期生产切K的平均数为10 (1)写出在短期生产中该厂商关于劳动的总产量TPL函数、关于劳动的平均产量APL函数和关于劳动的边际产量MPL函数。 (2)分别计算当劳动的总产量TPL、劳动的平均产量APL和劳动的边际产量MPL各自达到最大值时的厂商的劳动投入量。 (3)什么时候APL= MPL?它的值又是多少?


    答案:
    解析:

  • 第5题:

    假定某厂商短期生产的边际成本函数SMC( Q)=3Q2-8Q +100,而且已知当产量Q=10时的总成本STC= 2400.求相应的STC函数、SAC函数和AVC函数


    答案:
    解析:

  • 第6题:

    假设某完全竞争行业有200个相同的企业,企业的短期成本函数为TC =0. 2Q2+Q+15,市场需求函数为Qp= 2475 - 95P,厂商的长期总成本函数为LTC=0.1Q3-1. 2Q2+11.1Q,求: (1)市场短期均衡价格、产量及厂商利润。 (2)市场长期均衡价格与产量。 (3)说明是否会有厂商退出经营。


    答案:
    解析:
    (1)先求单个企业的供给函数:

    故A VC的最小值为1。 而MC的最小值也为1,故只有价格大于等于1,厂商才会供给商品。 此时单个企业的供给函数为P= MC =0.4Q +l,即Q=2.SP -2.5。 市场的供给函数为Qs=200Q =500P -500(P≥1),由QD=QS可得P=5。 市场均衡产量为2000单位,每个厂商产量为10单位。 单个厂商利润为5 x10 - (0.2 x102 +10+15) =5。

    将Q=6代入LAC,得IAC =7.5。 由长期均衡条件可得P=7. 5. (3)将P=7.5代入需求函数可得市场需求量为1762.5,而200个厂商的供给量为1200,再加上厂商短期利润为正,长期利润为O,所以没有厂商退出经营。

  • 第7题:

    下面是一张可变生产要素的短期生产函数的产量表

    (1)在表中填空。 (2)该生产函数是否表现出边际报酬递减?如果是,是从第几单位的可变要素投入量开始的?


    答案:
    解析:
    (1)利用短期生产的总产量(TP)、平均产量(AP)和边际产量(MP)之间的关系,可以完成对表4-1的填空,其结果如表4-2所示。

    (2)所谓边际报酬递减是指短期生产中一种可变要素的边际产量在达到最高点以后开始逐步下降的这样一种普遍的生产现象。本题的生产函数表现出边际报酬递减的现象,具体地说,由表4-2可见,当可变要素的投入量由第4单位增加到第5单位时,该要素的边际产量由原来的24下降为12。

  • 第8题:

    假设生产函数Q=min{5L,2K} (1)做出Q=50时的等产量曲线。 (2)推导该生产函数的边际技术替代率函数。 (3)分析该生产函数的规模报酬情况。


    答案:
    解析:

  • 第9题:

    假定某厂商短期生产的平均成本函数为SAC(Q)=200/Q+6-2Q+2Q^2,求该厂商的边际成本函数。


    答案:
    解析:
    该厂商的总成本函数为: STC(Q) =200 +6Q _2Q2 +2Q3 该厂商的边际成本函数为: MC(Q) =6 -4Q +6Q2

  • 第10题:

    某企业的生产成本函数为STC=Q3-4Q2+100Q+70。该企业在短期内的关门停产点是什么产量水平?


    正确答案: 边际成本函数SMC=STC′=3Q2-8Q+100
    短期内企业关门停产点的条件是SMC=AVC可得:
    3Q2-8Q+100=Q2-4Q+100
    所以Q=2

  • 第11题:

    问答题
    已知完全竞争市场的需求函数为D=6300-400P,短期市场供给函数为SS=3000+150P,单个企业在LAC曲线最低点的价格为6,产量为50,单个企业的成本规模不变。  求:(1)市场短期均衡价格与均衡产量。  (2)判断该市场是否同时处于长期均衡,求行业内的厂商数量。  (3)如果市场的需求函数变为D′=8000-400P,短期供给函数SS′=4700+150P,求市场短期均衡的价格和产量。  (4)判断该市场是否同时处于长期均衡,并求行业内厂商数量。

    正确答案: (1)由D=SS得:6300-400P=3000+150P,解得市场短期均衡价格与均衡产量分别为:P=6,Q=3900。
    (2)P=6=LACmin,所以该市场处于长期均衡,行业内的厂商数量n=Q/50=78。
    (3)由D′=SS′得:8000-400P=4700+150P,解得市场短期均衡价格与均衡产量分别为:P′=6,Q′=5600。
    (4)P′=6=LACmin,所以该市场处于长期均衡,行业内的厂商数量n=Q′/50=5600/50=112。
    解析: 暂无解析

  • 第12题:

    问答题
    某竞争行业所有厂商的规模都相等,都是在产量达到500单位时达到长期平均成本的最低点4元,当用最优的企业规模生产600单位产量时,每一个企业的短期平均成本为4.5元,市场需求函数为Q=70000-5000P,供给函数为Q=40000+2500P,求解下列问题:  (1)市场均衡价格是多少?该行业处于短期均衡还是长期均衡?  (2)当处于长期均衡时,该行业有多少厂商?  (3)如果市场需求变化为Q=100000-5000P,求行业与厂商新的短期均衡价格与产量,在新的均衡点,厂商盈利还是亏损?

    正确答案: (1)由均衡条件知:
    70000-5000P=40000+2500P
    解得:P=4,Q=50000。
    由于均衡价格与长期平均成本的最低点相等,故该行业处于长期均衡。
    (2)n=50000/500=100,所以当处于长期均衡时,该行业有100个厂商。
    (3)由均衡条件知:
    100000-5000P=40000+2500P
    得均衡价格P=8,Q=60000。
    每个厂商q=60000/100=600,此时厂商的短期平均成本为4.5元,所以厂商盈利(8>4.5)。
    解析: 暂无解析

  • 第13题:

    已知可变要素劳动的短期生产函数的产量表如下:

    (1)计算并填表中空格

    (2)在坐标图上做出劳动的总产量、平均产量和边际产量曲

    (3)该生产函数是否符合边际报酬递减规律?


    参考答案:(1)划分劳动投入的三个阶段 
    (2)作图如下:
    (3)符合边际报酬递减规律。

  • 第14题:

    假定某厂商短期生产的边际成本函数为SMC(Q)=3Q2-8Q+100,且已知当产量Q=10时的总成本STC=2400,求相应的STC函数、SAC函数和AVC函数。


    参考答案:


    切入点:对总成本函数求导数,得到边际成本函数,反过来对边际成本函数积分,会得到总成本函数。本题给了SMC,积分后得到总成本函数,再根据给的其他条件确定固定成本的数值。最后几个函数就出来了。

  • 第15题:

    假定某厂商的边际成本函数为SMC=3Q2-30Q+100,而且生产10单位产量的总成本为1000, 求:(1)固定成本的值。 (2)总成本函数、总可变成本函数、平均成本函数、平均可变成本函数。


    答案:
    解析:
    (1)根据边际成本函数和总成本函数之间的关系,由边际成本函数SMC= 3Q2—30Q +100积分可得总成本函数,即有:

  • 第16题:

    假定在短期生产的固定成本给定的条件下,某厂商使用一种可变要素L生产一种产品,其短期总成本函数为STC =5Q3 -18Q2 +100Q +160. 求:当产量Q为多少时,成本函数开始呈现出边际产量递减特征?


    答案:
    解析:
    根据题意,有:

    根据短期生产的可变要素边际产量MPL和生产的边际成本MC(Q)之间的关系式可知,在MC(Q)达到极小值时,MPL达到极大值。故从产量Q=1.2开始,该厂商的成本函数呈现边际产量递减特征。

  • 第17题:

    设生产函数为柯布道格拉斯函数Q=L^(1/3)K^(2/3),己知劳动力和资本的价格分别是w=1和r =2, (1)该生产函数代表了哪种类型的规模收益? (2)设企业的生产成本为3000,求两种要素的投入数量与总产量。 (3)设企业的生产产量为800,求两种要素的投入数量与企业所需付出的成本。


    答案:
    解析:

  • 第18题:

    已知生产函数为Q= KL -0.5L2-0.32K2;其中,Q表示产量,K表示资本.L表示劳动,令式中K=10,求: (1)写出劳动的平均产量(APPL)函数和边际产量(MPPL)函数。 (2)分别计算当总产量、平均产量和边际产量达到极大值时厂商雇佣的劳动。 (3)求上述条件下厂商总产量、平均产量和边际产量的极大值。


    答案:
    解析:

  • 第19题:

    某完全竞争厂商的短期边际成本函数为SMC=0.6Q-10,总收益函数为TR =38Q.而且已知产量Q=20时的总成本STC=260. 求:该厂商利润最大化时的产量和利润。


    答案:
    解析:
    由SMC=0.6Q -10可得STC=0.3Q2一10Q+ FC,又因为Q=20时的总成本STC= 260,代入可得FC= 340,从而STC =0.3Q2 -10Q +340。 由总收益函数TR= 38Q可得MR =38。 由利润最大化的条件MR= SMC可得Q=80,利润尺=1580 .

  • 第20题:

    已知某完全竞争市场的需求函数为D= 6300 - 400P,短期市场供给函数为SS= 3000+150P;单个企业在LAC曲线最低点的价格为6,产量为50;单个企业的成本规模不变. (1)求市场的短期均衡价格和均衡产量。 (2)判断(1)中的市场是否同时处于长期均衡,求行业内的厂商数量: (3)如果市场的需求函数变为D’=8000 - 400P,短期供给函数为SS’= 4700 +150P,求市场的短期均衡价格和均衡产量。 (4)判断(3)中的市场是否同时处于长期均衡,并求行业内的厂商数量。 (5)判断该行业属于什么类型。 (6)需要新加入多少企业,才能提供由(1)到(3)所增加的行业总产量?


    答案:
    解析:
    (1)根据市场短期均衡的条件D=SS,有6300 - 400P= 3000 +150P,解得P=6。 以P=6代入市场需求函数,有Q=6300 - 400×6=3900。 所以,该市场短期均衡价格和均衡产量分别为P=6、Q=3900: (2)因为该市场短期均衡时的价格P=6,由题意可知,单个企业在LAC曲线最低点的价格也为6,所以,由此可以判断该市场也同时处于长期均衡。 由(1)可知市场长期均衡时的数量为Q=3900,由题意可知,在市场长期均衡时单个企业的产量为50,所以,由此可以求出市场长期均衡时行业内的厂商数量为3900÷50= 78。 (3)根据市场短期均衡的条件D’=SS’,有8000 - 400P’=4700 +150P’,解得P’=6。 以P’ =6代入市场需求函数,有Q’= 8000 - 400×6=5600。 或者以P’=6代人市场短期供给函数,有Q’=4700 +150×6=5600。 所以,该市场在变化了的供求函数条件下的短期均衡价格和均衡产量分别为P’=6、Q’=5600。 (4)与(2)的分析相类似,在市场需求函数和短期供给函数变化之后,该市场短期均衡时的价格P=6,由题意可知,单个企业在LAC曲线最低点的价格也是6,所以,由此可以判断该市场的这一短期均衡同时也是长期均衡。 因为由(3)可知,供求函数变化以后的市场长期均衡时的产量Q’=5600,由题意可知,在市场长期均衡时单个企业的产量为50,所以,由此可以求出市场长期均衡时行业内的厂商数量为5600÷50= 112。 (5)由以上分析和计算过程可知:在该市场供求函数发生变化前后的市场长期均衡时的均衡价格是不变的,均为P=6,而且单个企业在LAC曲线最低点的价格也是6。于是,我们可以判断该行业属于成本不变行业。以上(1)~(5)的分析与计算结果的部分内容如图6—6所示。

    (6)由(1)和(2)可知,(1)时的厂商数量为78;由(3)和(4)可知,(3)时的厂商数量为112。因此,由(1)到(3)所增加的厂商数量为112 - 78= 34:或者,也可以这样计算:由于从(1)到(3)市场长期均衡产量的增加量为AQ= 5600 - 3900=1700。由题意可知,单个企业长期均衡时的产量为Q=50,所以,为提供AQ =1700的新增产量,需要新加入的企业数量为1700÷50= 34。

  • 第21题:

    某企业生产一种产品,劳动为唯一可变要素,固定成本既定。短期生产函数Q=-0.1L3+6L22+12L,求: (1)劳动的平均产量函数和边际产量函数。 (2)企业雇用工人的合理范围是多少? (3)若已知劳动的价格为W=480,产品Q的价格为40,则当利润最大时,企业生产多少产品Q?
    (1)平均产量AP=TP/L= -0.1 L2 +6L+12 边际产量MP=(TP)’= - 0.3 L2+12L+12
    (2)企业应在平均产量递减,边际产量为正的生产阶段组织生产,因此雇用工人的数量也应在此范围<0,MP>0内。 对APL求导,得= - 0.2 L +6=0。 即L=30 
    当L=30时,APL取得最大值,L>30,APL开始递减。 令MPL= - 0.3L2+12L+12=0,得L=40.98
    所以,企业雇用工人的合理范围为30≤L≤41
    (3)利润π=PQ-WL=40(- 0.1 L3 +6L2 +12L)-480L = - 4 L3 +240L2 +480L-480L
    Π’=- 12L2+480L,当Π’=0时, L=0 (舍去) 或L=40.
    当L=40时, Π” <0,所以L=40,利润π最大。
    此时,产量Q= -0.1×403+6 × 402 +12 × 40 =3680

  • 第22题:

    已知生产函数Q=f(L,K)=4KL-L2-0.25K2,假定厂商目前处于短期生产,且K=20。 (1)写出在短期生产中该厂商关于劳动的总产量TPL函数、劳动的平均产量APL函数和劳动的边际产量MPL函数。 (2)分别计算当劳动的总产量TPL、劳动的平均产量APL和劳动的边际产量MPL各自达到极大值时的厂商的劳动投入量。 (3)什么时候APL=MPL?它的值又是多少?


    正确答案:(1)由生产函数数Q=4KL-L2-0.25K2,且K=20,可得短期生产函数为:Q=80L-L2-0.25*202=80L-L2-100,于是,根据总产量、平均产量和边际产量的定义,有以下函数: 劳动的总产量函数TPL=80L-L2-100,劳动的平均产量函数APL=80-L-100/L,劳动的边际产量函数MPL=80-2L。
    (2)关于总产量的最大值:80-2L=0解得L=40,所以,劳动投入量为40时,总产量达到极大值。关于平均产量的最大值:-1+100L-2=0,L=10(负值舍去),所以,劳动投入量为10时,平均产量达到极大值。关于边际产量的最大值:由劳动的边际产量函数MPL=80-2L可知,边际产量曲线是一条斜率为负的直线。考虑到劳动投入量总是非负的,所以,L=0时,劳动的边际产量达到极大值。
    (3)当劳动的平均产量达到最大值时,一定有APL=MPL。由(2)可知,当劳动为10时,劳动的平均产量APL达最大值,及相应的最大值为:APL的最大值=60,MPL=80-20=60,很显然APL=MPL=60。

  • 第23题:

    问答题
    已知企业的生产函数为Q=F(L,K)=LK-0.5L2-0.32K2,Q表示产量,K表示资本,L表示劳动,令K=10。试求劳动的平均产量函数(AP1)和边际产量函数(MP1)。

    正确答案:
    当K=10时,短期生产函数为:Q=-0.5L2+10L-32
    因而劳动的平均产量函数为:APL=Q/L=-0.5L+10-32/L
    劳动的边际产量函数为:MPL=dQ/dL=-L+10
    解析: 您好,非常感谢您的反馈,本题的答案已完善。平均产量函数应为:AP=-0.5L+10-32/L。再次感谢。