参考答案和解析
正确答案:D
更多“假定某厂商的短期生产函数为Q(L)=6L-0.5L^2,则短期产量最大时L的投入量为()。 A.6B.3C.9D.8”相关问题
  • 第1题:

    假定在短期生产的固定成本给定的条件下,某厂商使用一种可变要素L生产一种产品 (1)该生产函数的平均产量为极大值时的/使用量。 (2)该生产函数的平均可变成本为极小值时的总产量。


    答案:
    解析:
    (1)该生产函数的平均产量为: AQ(L)=-0. 1L2 +2L+20 该生产函数的平均产量求导可得: -0. 2L+2 =0 即L=10时,平均产量为极大值。 (2)根据短期可变要素的平均产量APL和平均可变成本AVC( Q)之间的关系式可知,在L=10时,平均产量APL达到极大值,意味着平均可变成本AVC(Q)达到极小值。 此时Q(L)=-0.1 xl03 +2 xl02 +20 xl0 =300,即总产量Q=300。

  • 第2题:

    已知生产函数Q=f(L,K)=2KL-0.5L2-0.5K2,假定厂商目前处于短期生产切K的平均数为10 (1)写出在短期生产中该厂商关于劳动的总产量TPL函数、关于劳动的平均产量APL函数和关于劳动的边际产量MPL函数。 (2)分别计算当劳动的总产量TPL、劳动的平均产量APL和劳动的边际产量MPL各自达到最大值时的厂商的劳动投入量。 (3)什么时候APL= MPL?它的值又是多少?


    答案:
    解析:

  • 第3题:

    假设某厂商的短期生产函数为Q=35L+8L2-L3 求:(1)该企业的平均产量函数和边际产量函数。 (2)如果企业使用的生产要素的数量为/=6,是否处于短期生产的合理区间?为什么?


    答案:
    解析:
    (1)由Q=35L+ 8L2一L2可得: AP= Q/L=35+8L-L2,MP= dQ/d/= 35 +16L-3L2. (2)当L=6时,AP =47,MP =23,由于MP <AP,则处于短期生产的合理区间。

  • 第4题:

    假定某寡头厂商面临一条弯折的需求曲线,产量在0~30单位范围内时需求函数为P=60-0.3Q,产量超过30单位时需求函数为P=66 -0.50;该厂商的短期总成本函数为STC=0.005 Q3-0. 2Q2 +36Q +200。 (1)求该寡头厂商利润最大化的均衡产量和均衡价格。 (2)假定该厂商成本增加,导致短期总成本函数变为STC =0.005Q3 -0.2Q2 +50Q +200,求该寡头厂商利润最大化的均衡产量和均衡价格。 (3)对以上(1)和(2)的结果作出解释。



    答案:
    解析:

    边际成本函数为MC=0.015Q2 -0.4Q+36。 在Q =30时,边际收益的上限和下限分别为42、36。故在产量为30单位时,边际收益曲线间断部分的范围为36—42。 由厂商的边际成本函数可知,当Q =30时,有MC=37.5。 根据厂商的最大化利润原则,由于MC= 37.5处于边际收益曲线间断部分的范围MR=MC为36—42之内,符合利润最大化原则,所以厂商的产量和价格分别为Q=30、P=51。 (2)厂商边际成本函数为MC =0.015Q2-0. 4Q +50。 当Q =30时,MC= 51.5。 超出了边际收益曲线间断部分的范围36~ 42,此时根据厂商利润最大化原则MR= MC,得Q =20,P=54。 (3)由(1)结果可知,只要在Q=30时MC值处于边际收益曲线间断部分36—42范围之内,寡头厂商的产量和价格总是为Q= 30、P=51,这就是弯折曲线模型所解释的寡头市场的价格刚性现象。 只有边际成本超出了边际收益曲线间断部分36—42的范围,寡头市场的均衡价格和均衡产量才会发生变化。

  • 第5题:

    假定一个竞争性厂商,其生产函数为Q=f(L,K)=AL^αK^β,生产要素L和K的价格分别为w和r。 (1)试求在K为不变投入时厂商的短期成本函数。 (2)求厂商的长期成本函数,并讨论不同的规模报酬对平均成本曲线形状的影响。


    答案:
    解析:

  • 第6题:

    某完全竞争厂商的短期边际成本函数为SMC=0.6Q-10,总收益函数为TR =38Q.而且已知产量Q=20时的总成本STC=260. 求:该厂商利润最大化时的产量和利润。


    答案:
    解析:
    由SMC=0.6Q -10可得STC=0.3Q2一10Q+ FC,又因为Q=20时的总成本STC= 260,代入可得FC= 340,从而STC =0.3Q2 -10Q +340。 由总收益函数TR= 38Q可得MR =38。 由利润最大化的条件MR= SMC可得Q=80,利润尺=1580 .

  • 第7题:

    假定某厂商短期生产的平均成本函数为SAC(Q)=200/Q+6-2Q+2Q^2,求该厂商的边际成本函数。


    答案:
    解析:
    该厂商的总成本函数为: STC(Q) =200 +6Q _2Q2 +2Q3 该厂商的边际成本函数为: MC(Q) =6 -4Q +6Q2

  • 第8题:

    已知某完全竞争行业中的单个厂商的短期成本函数为STC=0.1Q3—2Q2+15Q+10。试求:(1)当市场上产品的价格为P=55时,厂商的短期均衡产量和利润;(2)当市场价格下降为多少时,厂商必须停产;(3)厂商的短期供给函数。


    正确答案: (1)P=MR=55
    短期均衡时SMC=0.3Q2-4Q+15=MR=55
    0.3Q2-4Q-40=0
    ∴Q=20或Q=-20/3(舍去)
    利润=PQ-STC=55×20-(0.1×8000-2×400+15×20+10)=790
    (2)厂商停产时,P=AVC最低点。
    AVC=SVC/Q=(0.1Q3—2Q2+15Q)/Q=0.1Q2-2Q+15
    AVC最低点时,AVC′=0.2Q-2=0
    ∴Q=10
    此时AVC=P=0.1×100-2×10+15=5
    (3)短期供给函数为P=MC=0.3Q2-4Q+15(取P>5一段)

  • 第9题:

    设某厂商品总产量函数为TPL=72L+15L2-L3,求: (1)当L=7时,边际产量MPL是多少? (2)L的投入量为多大时,边际产量MP将开始递减?


    正确答案:(1)TPL=72L+ 15L2- L3
    对TPL求导便可得 MPL=72+30L-3L2 ,所以当L=7时,MPL=72+30×7-3×72 =135
    (2)边际产量MPL达到最大之后开始递减,MPL最大时,其一阶导数为零,所以(MPL)’=30-6L=0,L=5

  • 第10题:

    已知生产函数Q=f(L,K)=4KL-L2-0.25K2,假定厂商目前处于短期生产,且K=20。 (1)写出在短期生产中该厂商关于劳动的总产量TPL函数、劳动的平均产量APL函数和劳动的边际产量MPL函数。 (2)分别计算当劳动的总产量TPL、劳动的平均产量APL和劳动的边际产量MPL各自达到极大值时的厂商的劳动投入量。 (3)什么时候APL=MPL?它的值又是多少?


    正确答案:(1)由生产函数数Q=4KL-L2-0.25K2,且K=20,可得短期生产函数为:Q=80L-L2-0.25*202=80L-L2-100,于是,根据总产量、平均产量和边际产量的定义,有以下函数: 劳动的总产量函数TPL=80L-L2-100,劳动的平均产量函数APL=80-L-100/L,劳动的边际产量函数MPL=80-2L。
    (2)关于总产量的最大值:80-2L=0解得L=40,所以,劳动投入量为40时,总产量达到极大值。关于平均产量的最大值:-1+100L-2=0,L=10(负值舍去),所以,劳动投入量为10时,平均产量达到极大值。关于边际产量的最大值:由劳动的边际产量函数MPL=80-2L可知,边际产量曲线是一条斜率为负的直线。考虑到劳动投入量总是非负的,所以,L=0时,劳动的边际产量达到极大值。
    (3)当劳动的平均产量达到最大值时,一定有APL=MPL。由(2)可知,当劳动为10时,劳动的平均产量APL达最大值,及相应的最大值为:APL的最大值=60,MPL=80-20=60,很显然APL=MPL=60。

  • 第11题:

    问答题
    计算题: 已知某完全竞争行业中的单个厂商的短期成本函数为STC=0.1Q3-2Q2+15Q+10。试求: (1)当市场上产品的价格为P=55时,厂商的短期均衡产量和利润; (2)当市场上价格下降为多少时,厂商必须停产; (3)厂商的短期供给函数

    正确答案: (1)根据MC=MR=P
    MC=dSTC/dQ=0.3Q2-4Q+15=55=P
    解得Q=20
    利润=TR-STC=55*20-(0.1*203-2*202+15*20+10)=790
    (2)停业点为AVC的最低点
    AVC=TVC/Q=0.1Q2-2Q+15
    当Q=10时AVC最小且AVC=5所以P=5时厂商必须停产
    (3)短期供给函数即SMC函数且大于最低AVC对应产量以上的区间
    SMC=dSTC/dQ=0.3Q2-4Q+15
    所以短期供函数为0.3Q2-4Q+15(Q≥10)
    解析: 暂无解析

  • 第12题:

    问答题
    已知某完全竞争行业中的单个厂商的短期成本函数为:STC=0.1Q3-2Q2+15Q+10(1)当市场上产品价格为 55时厂商的短期均衡产量和利润;(2)当市场价格下降为多少时厂商必须停产?(3)求厂商的短期供给函数。

    正确答案:
    由短期成本函数可得厂商的短期边际成本函数为:SMC=0.3Q2-4Q+15。
    完全竞争厂商实现短期均衡时,有SMC=P,即0.3Q2-4Q+15=55,解得:Q=20。
    此时,利润为π=PQ-STC=55×20-(0.1×203-2×202+15×20+10)=790。
    即均衡产量为20,利润为790。
    解析: 暂无解析

  • 第13题:

    假定某完全竞争行业有100个相同的厂商,单个厂商的短期总成本函数为.STC=Q2+6Q +20。 (l)求市场的短期供给函数。 (2)假定市场的需求函数为Qd=420 - 30P,求该市场的短期均衡价格和均衡产量。 (3)假定政府对每一单位商品征收1.6元的销售税,那么,该市场的短期均衡价格和均衡产量是多少?消费者和厂商各自负担多少税收?


    答案:
    解析:
    (1)单个厂商的边际成本MC =2Q +6。 由短期均衡条件可知P= MC,即P=2Q +6, 即Q =0.5P-3。 故市场的短期供给函数为Qs=100Q= 50P - 300。 (2)联立供给函数与需求函数,可得P=9,Q=150。 (3)征税后,联立函数:

    解得Pd=10,Q=120。 故市场短期均衡价格为10,均衡产量为120。 消费者承担1元税收,厂商承受0.6元税收。

  • 第14题:

    假定在短期生产的固定成本给定的条件下,某厂商使用一种可变要素L生产一种产品,其短期总成本函数为STC =5Q3 -18Q2 +100Q +160. 求:当产量Q为多少时,成本函数开始呈现出边际产量递减特征?


    答案:
    解析:
    根据题意,有:

    根据短期生产的可变要素边际产量MPL和生产的边际成本MC(Q)之间的关系式可知,在MC(Q)达到极小值时,MPL达到极大值。故从产量Q=1.2开始,该厂商的成本函数呈现边际产量递减特征。

  • 第15题:

    假定某厂商短期生产的边际成本函数SMC( Q)=3Q2-8Q +100,而且已知当产量Q=10时的总成本STC= 2400.求相应的STC函数、SAC函数和AVC函数


    答案:
    解析:

  • 第16题:

    假定某厂商的短期生产函数为Q=f(L,K)给定生产要素价格PL、PK和产品P且利润π>0 证明:该厂商在短期生产的第一阶段不存在利润最大化的点。


    答案:
    解析:
    根据题意可知,L为可变要素,K为不变要素,并可得利润等式:

    故在第一阶段,厂商利润是随着L增加而增加,不满足利润最大化条件,故不存在利润最大化的点。

  • 第17题:

    已知某完全竞争行业中的单个厂商的短期成本函数为STC =0.1Q3- 2Q2+150 +10 . (1)求当市场上产品的价格为P=55时,厂商的短期均衡产量和利润。 (2)当市场价格下降为多少时,厂商必须停产? (3)求厂商的短期供给函数。


    答案:
    解析:

  • 第18题:

    假定某完全竞争厂商的短期总成本函数为STC=0.04Q3-0.4Q2+8Q +9,产品的价格P=12.求该厂商实现利润最大化时的产量、利润量和生产者剩余。


    答案:
    解析:

  • 第19题:

    某企业生产一种产品,劳动为唯一可变要素,固定成本既定。短期生产函数Q=-0.1L3+6L22+12L,求: (1)劳动的平均产量函数和边际产量函数。 (2)企业雇用工人的合理范围是多少? (3)若已知劳动的价格为W=480,产品Q的价格为40,则当利润最大时,企业生产多少产品Q?
    (1)平均产量AP=TP/L= -0.1 L2 +6L+12 边际产量MP=(TP)’= - 0.3 L2+12L+12
    (2)企业应在平均产量递减,边际产量为正的生产阶段组织生产,因此雇用工人的数量也应在此范围<0,MP>0内。 对APL求导,得= - 0.2 L +6=0。 即L=30 
    当L=30时,APL取得最大值,L>30,APL开始递减。 令MPL= - 0.3L2+12L+12=0,得L=40.98
    所以,企业雇用工人的合理范围为30≤L≤41
    (3)利润π=PQ-WL=40(- 0.1 L3 +6L2 +12L)-480L = - 4 L3 +240L2 +480L-480L
    Π’=- 12L2+480L,当Π’=0时, L=0 (舍去) 或L=40.
    当L=40时, Π” <0,所以L=40,利润π最大。
    此时,产量Q= -0.1×403+6 × 402 +12 × 40 =3680

  • 第20题:

    某企业的生产函数为Q=2(KL)1/2。其中,Q、K、L分别为每月的产量(万件)、资本投入量(万台时)、投入的人工数(万工时)。假定L每万工时的工资4000元,K短期内固定为10万台时,每万台时的费用2000元。可判断()为该企业正确的短期成本函数。

    • A、STC=20000+50Q2
    • B、STC=20000+100Q2
    • C、SAC=50Q+20000/Q
    • D、SMC=200Q

    正确答案:B,D

  • 第21题:

    计算题:假定某厂商只有一种可变要素劳动L,产出一种产品Q,固定成本为既定,短期生产函数Q=-0。1L3+6L2+12L,求: (1)劳动的平均产量AP为最大值时的劳动人数 (2)劳动的边际产量MP为最大值时的劳动人数 (3)平均可变成本极小值时的产量


    正确答案:(1)因为:生产函数Q=-0.1L3+6L2+12L
    所以:平均产量AP=Q/L=-0.1L2+6L+12
    对平均产量求导,得:-0.2L+6
    令平均产量为零,此时劳动人数为平均产量为最大。L=30
    (2)因为:生产函数Q=-0.1L3+6L2+12L
    所以:边际产量MP=-0.3L2+12L+12
    对边际产量求导,得:-0.6L+12
    令边际产量为零,此时劳动人数为边际产量为最大。L=20
    (3)因为:平均产量最大时,也就是平均可变成本最小,而平均产量最大时L=30,所以把L=30代入Q=-0。1L3+6L2+12L,平均成本极小值时的产量应为:Q=3060,即平均可变成本最小时的产量为3060。

  • 第22题:

    问答题
    已知某完全竞争行业中的单个厂商的短期成本函数为STC=0.1Q3—2Q2+15Q+10。试求:(1)当市场上产品的价格为P=55时,厂商的短期均衡产量和利润;(2)当市场价格下降为多少时,厂商必须停产;(3)厂商的短期供给函数。

    正确答案: (1)P=MR=55
    短期均衡时SMC=0.3Q2-4Q+15=MR=55
    0.3Q2-4Q-40=0
    ∴Q=20或Q=-20/3(舍去)
    利润=PQ-STC=55×20-(0.1×8000-2×400+15×20+10)=790
    (2)厂商停产时,P=AVC最低点。
    AVC=SVC/Q=(0.1Q3—2Q2+15Q)/Q=0.1Q2-2Q+15
    AVC最低点时,AVC′=0.2Q-2=0
    ∴Q=10
    此时AVC=P=0.1×100-2×10+15=5
    (3)短期供给函数为P=MC=0.3Q2-4Q+15(取P>5一段)
    解析: 暂无解析

  • 第23题:

    问答题
    已知某厂商的生产函数为Q=0.5L1/3K2/3;当资本投入量K=50时资本的总价值为500;劳动的价格PL=5。求:  (1)劳动的投入函数L=L(Q);  (2)总成本函数、平均成本函数和边际成本函数;  (3)当产品的价格P=100时,厂商获得最大利润的产量和利润各是多少?

    正确答案: (1)因为K=50,则Q=0.5L1/3K2/3=0.5L1/3502/3,L=0.0032Q3,此即为劳动的投入函数。
    (2)总成本函数为:TC=PLL+PKK=0.016Q3+500
    平均成本函数为:ATC=TC/Q=0.016Q2+500/Q
    边际成本函数为:MC=dTC/dQ=0.048Q2
    (3)当产品的价格P=100时,厂商的边际收益MR=P=100,由厂商获得最大利润的条件MR=MC,即100=0.048Q2,解得Q≈45.64。
    此时利润:π=PQ-TC=100×45.64-0.016×45.643-500≈2543。
    解析: 暂无解析