A.6
B.3
C.9
D.8
第1题:
第2题:
第3题:
第4题:
第5题:
第6题:
第7题:
第8题:
已知某完全竞争行业中的单个厂商的短期成本函数为STC=0.1Q3—2Q2+15Q+10。试求:(1)当市场上产品的价格为P=55时,厂商的短期均衡产量和利润;(2)当市场价格下降为多少时,厂商必须停产;(3)厂商的短期供给函数。
第9题:
设某厂商品总产量函数为TPL=72L+15L2-L3,求: (1)当L=7时,边际产量MPL是多少? (2)L的投入量为多大时,边际产量MP将开始递减?
第10题:
已知生产函数Q=f(L,K)=4KL-L2-0.25K2,假定厂商目前处于短期生产,且K=20。 (1)写出在短期生产中该厂商关于劳动的总产量TPL函数、劳动的平均产量APL函数和劳动的边际产量MPL函数。 (2)分别计算当劳动的总产量TPL、劳动的平均产量APL和劳动的边际产量MPL各自达到极大值时的厂商的劳动投入量。 (3)什么时候APL=MPL?它的值又是多少?
第11题:
第12题:
第13题:
第14题:
第15题:
第16题:
第17题:
第18题:
第19题:
某企业生产一种产品,劳动为唯一可变要素,固定成本既定。短期生产函数Q=-0.1L3+6L22+12L,求: (1)劳动的平均产量函数和边际产量函数。 (2)企业雇用工人的合理范围是多少? (3)若已知劳动的价格为W=480,产品Q的价格为40,则当利润最大时,企业生产多少产品Q?
(1)平均产量AP=TP/L= -0.1 L2 +6L+12 边际产量MP=(TP)’= - 0.3 L2+12L+12
(2)企业应在平均产量递减,边际产量为正的生产阶段组织生产,因此雇用工人的数量也应在此范围<0,MP>0内。 对APL求导,得= - 0.2 L +6=0。 即L=30
当L=30时,APL取得最大值,L>30,APL开始递减。 令MPL= - 0.3L2+12L+12=0,得L=40.98
所以,企业雇用工人的合理范围为30≤L≤41
(3)利润π=PQ-WL=40(- 0.1 L3 +6L2 +12L)-480L = - 4 L3 +240L2 +480L-480L
Π’=- 12L2+480L,当Π’=0时, L=0 (舍去) 或L=40.
当L=40时, Π” <0,所以L=40,利润π最大。
此时,产量Q= -0.1×403+6 × 402 +12 × 40 =3680
略
第20题:
某企业的生产函数为Q=2(KL)1/2。其中,Q、K、L分别为每月的产量(万件)、资本投入量(万台时)、投入的人工数(万工时)。假定L每万工时的工资4000元,K短期内固定为10万台时,每万台时的费用2000元。可判断()为该企业正确的短期成本函数。
第21题:
计算题:假定某厂商只有一种可变要素劳动L,产出一种产品Q,固定成本为既定,短期生产函数Q=-0。1L3+6L2+12L,求: (1)劳动的平均产量AP为最大值时的劳动人数 (2)劳动的边际产量MP为最大值时的劳动人数 (3)平均可变成本极小值时的产量
第22题:
第23题: