参考答案和解析
答案:
解析:
更多“证明的充分必要条件是存在非零列向量a及非零行向量使.”相关问题
  • 第1题:

    设a,b均为向量,下列命题中错误的是( ).

    A.a∥b的充分必要条件是存在实数λ,使b=λa
    B.a∥b的充分必要条件是a×b=0
    C.a⊥b的充分必要条件是a·b=0
    D.

    答案:D
    解析:

  • 第2题:

    设A为n阶矩阵,证明:r(A)=1的充分必要条件是存在n维非零列向量α,β使得A=αβT.


    答案:
    解析:

  • 第3题:

    设A为s×n矩阵且A的行向量组线性无关,K为r×s矩阵。证明:B=KA行无关的充分必要条件是R(K)=r


    答案:
    解析:

  • 第4题:

    设A为n阶方阵,rank(A)=3

    A.任意3个行向量都是极大线性无关组
    B.至少有3个非零行向量
    C.必有4个行向量线性无关
    D.每个行向量可由其余n- 1个行向量线性表示

    答案:B
    解析:

  • 第5题:

    在线性规划问题的典式中,基变量的系数列向量为()

    • A、单位阵
    • B、非单位阵
    • C、单位行向量
    • D、单位列向量

    正确答案:D

  • 第6题:

    单选题
    设A是m×n的非零矩阵,B是m×1非零矩阵,满足AB=0,以下选项中不一定成立的是:()
    A

    A的行向量组线性相关

    B

    A的列向量组线性相关

    C

    B的行向量组线性相关

    D

    r(A)+r(B)≤n


    正确答案: C
    解析: 由于AB=0,得到r(A)+r(B)≤n,又由于A,B都是非零矩阵,则r(A)>0,r(B)>0,得r(A)<nr(B)<n。因此A的列向量组线性相关,B的行向量组线性相关。

  • 第7题:

    单选题
    A是n阶方阵,其秩r<n,则在A的n个行向量中(  ).
    A

    必有r个行向量线性无关

    B

    任意r个行向量线性无关

    C

    任意r个行向量都构成极大线性无关向量组

    D

    任意一个行向量都可由其他任意r个行向量线性表出


    正确答案: B
    解析:
    因矩阵A的秩等于A的行向量组的秩,所以其行向量组的秩也为r,而向量组线性无关的充要条件是它所含向量个数等于它的秩,因此A中必有r个行向量线性无关.

  • 第8题:

    问答题
    证明:  (1)若α(→)1,α(→)2,…,α(→)r是A的属于特征值λ的特征向量,则α(→)1,α(→)2,…,α(→)r的任一个非零线性组合也是A的属于λ的特征向量。  (2)矩阵可逆的充分必要条件是它的特征值都不为0。

    正确答案:
    (1)因为α()1,α()2,…,α()r是A的属于特征值λ的特征向量,则有Aα()iα()i(i=1,2,…,r)。设k1α()1+k2α()2+…+krα()rα()1,α()2,…,α()r的任一非零线性组合,则
    A(k1α()1+k2α()2+…+krα()r)=k1Aα()1+k2Aα()2+…+krAα()r=k1λα()1+k2λα()2+…+krλα()r=λ(k1α()1+k2α()2+…+krα()r)
    由定义知k1α()1+k2α()2+…+krα()r是A的属于特征值λ的特征向量。
    (2)必要性
    设矩阵A可逆,可知行列式,A,≠0。
    由于,A,=λ1λ2…λn,故λi≠0(i=1,2,…,n)。
    充分性
    由矩阵A的特征值λi≠0(i=1,2,…,n),知,A,=λ1λ2…λn≠0,即矩阵A可逆。
    解析: 暂无解析

  • 第9题:

    单选题
    在线性规划问题的典式中,基变量的系数列向量为()
    A

    单位阵

    B

    非单位阵

    C

    单位行向量

    D

    单位列向量


    正确答案: D
    解析: 暂无解析

  • 第10题:

    设a1,a2,a3均为3维向量,则对任意常数k,l,向量组线性无关是向量组a1,a2,a3线性无关的( )

    A.必要非充分条件
    B.充分非必要条件
    C.充分必要条件
    D.既非充分也非必要条件

    答案:A
    解析:

  • 第11题:

    设A为n阶非奇异矩阵,α为n维列向量,b为常数.记分块矩阵.其中A*是矩阵A的伴随矩阵,E是n阶单位矩阵. (1)计算并化简PQ; (2)证明:矩阵Q可逆的充分必要条件是.


    答案:
    解析:

  • 第12题:

    设α1,α2,α3均为三维向量,则对任意常数k,l,向量组α1+kα3,α2+lα3线性无关是向量组α1,α2,α3线性无关的

    A.A必要非充分条件
    B.充分非必要条件
    C.充分必要条件
    D.既非充分也非必要条件

    答案:A
    解析:

  • 第13题:

    设a,b为非零向量,λ∈R+,满足|a+b|=λ|a-b|,则“λ>1”是“a,b的夹角为锐角”的(  )

    A、充分不必要条件
    B、必要不充分条件
    C、充分必要条件
    D、既不充分也不必要条件

    答案:B
    解析:

  • 第14题:

    设a,b均为向量,下列命题中错误的是().

    • A、a∥b的充分必要条件是存在实数λ,使b=λa
    • B、a∥b的充分必要条件是a×b=0
    • C、a⊥b的充分必要条件是a·b=0
    • D、D.a⊥b的充分必要条件是(a+·(a-B.=

    正确答案:D

  • 第15题:

    单选题
    设向量组Ⅰ:α(→)1,α(→)2,…,α(→)m,其秩为r;向量组Ⅱ:α(→)1,α(→)2,…, α(→)m,β(→),其秩为s,则r=s是向量组Ⅰ与向量组Ⅱ等价的(  )。
    A

    充分非必要条件

    B

    必要非充分条件

    C

    充分必要条件

    D

    既非充分也非必要条件


    正确答案: A
    解析:
    两向量组等价的充要条件是它们有相同的秩。

  • 第16题:

    单选题
    设A为m×n矩阵,齐次线性方程组AX(→)=0(→)仅有零解的充分条件是(  )。
    A

    A的列向量组线性无关

    B

    A的列向量组线性相关

    C

    A的行向量组线性无关

    D

    A的行向量组线性相关


    正确答案: C
    解析:
    因为AX()0()仅有零解的充分必要条件是A的秩r(A)=n,所以A的列向量组线性无关是AX()0()仅有零解的充分条件。

  • 第17题:

    单选题
    设向量组I:α(→)1,α(→)2,…,α(→)m,其秩为r;向量组II:α(→)1,α(→)2,…,α(→)m,β(→),其秩为s,则r=s是向量组I与向量组II等价的(  )。
    A

    充分非必要条件

    B

    必要非充分条件

    C

    充分必要条件

    D

    既非充分也非必要条件


    正确答案: C
    解析:
    两向量组等价的充要条件是它们有相同的秩。

  • 第18题:

    单选题
    设A,B为满足AB=0(→)的任意两个非零矩阵,则必有(  )。
    A

    A的列向量组线性相关,B的行向量组线性相关

    B

    A的列向量组线性相关,B的列向量组线性相关

    C

    A的行向量组线性相关,B的行向量组线性相关

    D

    A的行向量组线性相关,B的列向量组线性相关


    正确答案: D
    解析:
    设A为m×n矩阵,B为n×s矩阵,由AB=0()知r(A)+r(B)≤n,又r(A)≥1,r(B)≥1,因此r(A)<n,r(B)<n,说明A的列向量组线性相关,B的行向量组线性相关。