设随机变量(X,Y)在区域D={(z,y)|0≤x≤2,0≤y≤1}上服从均匀分布,令U=,V=.(1)求(U,V)的联合分布;(2)求.

题目
设随机变量(X,Y)在区域D={(z,y)|0≤x≤2,0≤y≤1}上服从均匀分布,令
  U=,V=.
  (1)求(U,V)的联合分布;(2)求.


相似考题
更多“设随机变量(X,Y)在区域D={(z,y)|0≤x≤2,0≤y≤1}上服从均匀分布,令 ”相关问题
  • 第1题:

    设二维随机变量(X,Y)服从区域G上的均匀分布,其中G是由x-y=0,x+y=2,与y=0所围成的三角形区域.
      (Ⅰ)求X的概率密度fx(x);
      (Ⅱ)求条件概率密度.


    答案:
    解析:

  • 第2题:

    设随机变量X~N(μ,σ^2),Y~U[-π,π],X,Y相互独立,令Z=X+Y,求fz(z).


    答案:
    解析:

  • 第3题:

    设(X,Y)在区域D:0  (1)求随机变量X的边缘密度函数;(2)设Z=2X+1,求D(Z).


    答案:
    解析:

  • 第4题:

    设随机变量X与Y相互独立,X的概率分布为P{X=1}=P{X=-1}=,Y服从参数为λ的泊松分布.令Z=XY.
      (Ⅰ)求Cov(X,Z);
      (Ⅱ)求Z的概率分布.


    答案:
    解析:

  • 第5题:

    已知二维随机变量(X,Y)服从区域[0,1]×[0,1]上的均匀分布,则( )。

    A.P{X>0.5}=0.25
    B.P{Y>0.5}=0.25
    C.P{max(X,Y)>0.5}=0.25
    D.P{min(X,Y)>0.5}=0.25

    答案:D
    解析:
    二维均匀分布的概率等于面积比。所以P{X>0.5}=0.5,P{Y>0.5}=0.5,P{max(X,Y)>0.5}不能确定,P{min(X,Y)>0.5}=P{X>0.5,Y>0.5}=0.25。

  • 第6题:

    设随机变量X与Y相互独立,且X在区间[0,2]上服从均匀分布,Y服从参数为3的指数分布,则数学期望E(XY)等于()。

    • A、1
    • B、3

    正确答案:D

  • 第7题:

    设随机变量X服从[0,2]上的均匀分布,Y=2X+1,则D(Y)=()。


    正确答案:4/3

  • 第8题:

    设随机变量X与Y相互独立,且X~N(1,2),Y~N(0,1)。令Z=-Y+2X+3,则D(Z)=()。


    正确答案:9

  • 第9题:

    设(X,Y)在由直线y=x,y=2-x,y=0所围的区域内服从均匀分布,则P{0.1


    正确答案:0.6

  • 第10题:

    设随机变量X,Y相互独立,且均服从[0,1]上的均匀分布,则服从均匀分布的是()。

    • A、XY
    • B、(X,Y)
    • C、X—Y
    • D、X+Y

    正确答案:B

  • 第11题:

    设随机变量X,Y相互独立,其中X在[0,6]上服从均匀分布,Y服从参数为λ=3的泊松分布,记Z=X-2Y,则D(Z)=()。


    正确答案:15

  • 第12题:

    问答题
    (X,Y)服从矩形区域D={(x,y)| 0≤X≤2,0≤y≤2}上的均匀分布,则P{0≤X≤1,1≤Y≤2}=_____

    正确答案:
    解析:

  • 第13题:

    设X,Y相互独立且都服从(0,2)上的均匀分布,令Z=min{X,Y},则P(0

    答案:
    解析:
    由X,Y在(0,2)上服从均匀分布得  
    因为x,Y相互独立,所以
      Fz(z)=P(Z≤z)=1-P(Z>z)=1-P(min{X,Y)}>z)=1-P(X>z,Y>z)
      =1-P(X>z)P(Y>z)=1=【1-P(X≤z)】【1-P(Y≤z)】
      =1-【1-Fx(z)】【1-FY(z)】,

  • 第14题:

    设随机变量X服从参数为2的指数分布,证明:Y=1-在区间(0,1)上服从均匀分布.


    答案:
    解析:

  • 第15题:

    设随机变量X在区间(0,1)内服从均匀分布,在X=x(0  (Ⅰ)随机变量X和Y的联合概率密度;
      (Ⅱ)Y的概率密度;
      (Ⅲ)概率P{X+Y>1}.


    答案:
    解析:
    【简解】本题是数四2004年考题,考查均匀分布,二维随机变量的概率密度、边缘密度和条件密度,当年的得分率仅为0.204.主要的困难在于对条件概率密度的理解.

  • 第16题:

    设二维随机变量(X,Y)在区域上服从均匀分布,令
      (Ⅰ)写出(X,Y)的概率密度;
      (Ⅱ)请问U与X是否相互独立?并说明理由;
      (Ⅲ)求Z=U+X的分布函数F(z).


    答案:
    解析:

  • 第17题:

    设随机变量X,Y相互独立,且X~N(μ,σ2),Y在[a,b]区间上服从均匀分布,则D(X-2Y)=()。



    答案:A
    解析:

  • 第18题:

    设随机变量X与Y相互独立且都服从区间[0,1]上的均匀分布,则下列随机变量中服从均匀分布的有()。

    • A、X2
    • B、X+Y
    • C、(X,Y)
    • D、X-Y

    正确答案:C

  • 第19题:

    设二维随机变量(X,Y)在区域D上服从均匀分布,其中D://0≤x≤2,0≤y≤2。记(X,Y)的概率密度为f(x,y),则f(1,1)=()


    正确答案:0.25

  • 第20题:

    设随机变量(X,Y)在区域D={(x,y)|0


    正确答案:4

  • 第21题:

    设随机变量X,Y都服从区间[0,1]上的均匀分布,则E(X+Y)=()

    • A、1/6
    • B、1/2
    • C、1
    • D、2

    正确答案:C

  • 第22题:

    设X在[0,1]上服从均匀分布,Y=2X+1,则下列结论正确的是()

    • A、Y在[0,1]上服从均匀分布
    • B、Y在[1,3]上服从均匀分布
    • C、Y在[0,3]上服从均匀分布
    • D、P{0≤Y≤1}=1

    正确答案:B

  • 第23题:

    设X,Y相互独立,且都服从标准正态分布N(0,1),令Z=X2+Y2则Z服从的分布是().

    • A、N(0,2)分布
    • B、单位圆上的均匀分布
    • C、参数为1的瑞利分布
    • D、N(0,1)分布

    正确答案:C