更多“设f(x)在闭区间[0,1]上连续,在(0,1)内可导,且f(0)=0,”相关问题
  • 第1题:

    设函数f(x)在点x=a处可导,则函数|f(x)|在点x=a处不可导的充分条件是( )

    A.f(a)=0且f′(a)=0
    B.f(a)=0且f′(a)≠0
    C.f(a)>0且f′(a)>
    D.f(a)<0且f′(a)<

    答案:B
    解析:

  • 第2题:

    设f(x)二阶可导,f(0)= f(1),且f(x)在[0,1]上的最小值为—1.证明:


    答案:
    解析:

  • 第3题:

    设函数f(x)在区间[0,1]上具有2阶导数,且,证明:
      (Ⅰ)方程f(x)=0在区间(0,1)内至少存在一个实根;
      (Ⅱ)方程在区间(0,1)内至少存在两个不同实根.


    答案:
    解析:

  • 第4题:

    设f(x)在[a,b]上可导,且f(a)f(b)小于0,


    答案:
    解析:
    由f(a)f(b)小于0,知f(x)在[a,b]上至少有一个零点. 故f(x)在[a,b]上零点的个数为1.

  • 第5题:

    设在f(x)上连续,在[0,1]内可导,且f(0)=f(1),则:在(0,1)内曲线y=f(x)的所有切线中《》( )

    A.至少有一条平行于x轴
    B.至少有一条平行于y轴
    C.没有一条平行于x轴
    D.可能有一条平行于y轴

    答案:A
    解析:

  • 第6题:

    设函数f(x)在(0,1)内可导,f'(x)>0,则f(x)在(0,1)内(  )

    A.单调减少
    B.单调增加
    C.为常量
    D.不为常量,也不单调

    答案:B
    解析:
    由于f'(x)>0,可知f(x)在(0,1)内单调增加.因此选B.

  • 第7题:

    已知函数f(x)在区间(0,1)内可导,则以下结论正确的是( )。



    答案:C
    解析:

  • 第8题:

    问答题
    设f(x)在[0,1]上具有二阶导数,且满足条件|f(x)|≤a,|f″(x)|≤b(其中a、b都是非负常数),c是(0,1)内任一点。  (1)写出f(x)在点x=c处带拉格朗日余项的一阶泰勒公式;  (2)证明:|f′(c)|<2a+b/2。

    正确答案:
    (1)f(x)在x=c处带拉格朗日余项的一阶泰勒公式为f(x)=f(c)+f′(c)(x-c)+f″(ξ)(x-c)2/(2!),其中ξ介于x和c之间。
    (2)证明:在(1)中所得结论中,令x=0得
    f(0)=f(c)+f′(c)(-c)+f″(ξ1)c2/(2!)①
    令x=1得
    f(1)=f(c)+f′(c)(1-c)+f″(ξ2)(1-c)2/(2!)②
    ②-①得f(1)-f(0)=f′(c)+[(1-c)2f″(ξ2)-c2f″(ξ1)]/2,则
    ,f′(c),=,f(1)-f(0)-[(1-c)2f″(ξ2)-c2f″(ξ1)]/2,≤,f(1),+,f(0),+,f″(ξ2),(1-c)2/2+c2,f″(ξ1),/2≤a+a+b[(1-c)2+c2]/2
    又02+c2<1,则,f′(c),<2a+b/2。
    解析: 暂无解析

  • 第9题:

    问答题
    设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)·f(b)>0,f(a)·f[(a+b)/2]<0。试证:对任意实数k,∃ξ∈(a,b),使得f′(ξ)=kf(ξ)。

    正确答案:
    令F(x)=e-kxf(x)(a≤x≤b),则F(a)F(b)>0,F(a)F[(a+b)/2]<0,由介值定理得∃ξ1ξ2:a<ξ1<(a+b)/2<ξ21)=F(ξ2)=0。
    由罗尔定理得∃ξ∈(ξ12)⊂(a,b),使得F′(ξ)=0,即e-[f′(ξ)-kf(ξ)]=0。故f′(ξ)=kf(ξ)。
    解析: 暂无解析

  • 第10题:

    问答题
    设f′(x)在[a,b]上连续,在(a,b)内可导,且f(a)f(b)>0,f(a)f[(a+b)/2]<0,试证至少存在一个点ξ∈(a,b)使f′(ξ)=f(ξ)。

    正确答案:
    构造函数F(x)=e-xf(x)。
    不妨设f(a)>0,则f(b)>0,f[(a+b)/2]<0。故F(a)=e-af(a)>0,F[(b+a)/2]=e-(b+a)/2f[(b+a)/2]<0,F(b)=e-bf(b)>0。
    又F(x)在[a,(b+a)/2]和[(b+a)/2,b]上连续,则必∃c1∈(a,(b+a)/2),c2∈((b+a)/2,b),使F(c1)=F(c2)=0。
    F(x)在[c1,c2]上满足罗尔定理的条件,故∃ξ∈(c1,c2)⊂(a,b),使F′(ξ)=e-ξ[f′(ξ)-f(ξ)]=0,即f′(ξ)=f(ξ),(e-ξ>0)。
    解析: 暂无解析

  • 第11题:

    单选题
    若f(x)在区间[a,+∞)上二阶可导,且f(a)=A>0,f′(a)<0,f″(x)<0(x>a),则方程f(x)=0在(a,+∞)内(  )。
    A

    没有实根

    B

    有两个实根

    C

    有无穷多个实根

    D

    有且仅有一个实根


    正确答案: C
    解析:
    由f″(x)<0(x>a)知f′(x)单调减少,又f′(a)<0,则f′(x)在区间(a,+∞)上恒小于0,即f(x)在区间(a,+∞)上单调减少,又由f(a)=A>0,且f(x)在区间[a,+∞)上二阶可导,故方程f(x)=0在(a,+∞)内有且仅有一个实根。

  • 第12题:

    问答题
    设f(x)在闭区间[0,c]上连续,其导数f′(x)在开区间(0,c)内存在且单调减少,f(0)=0,试应用拉格朗日中值定理证明不等式:f(a+b)≤f(a)+f(b),其中a,b满足条件0≤a≤b≤a+b≤c。

    正确答案:
    f(a+b)-f(a)-f(b)=[f(a+b)-f(b)]-[f(a)-f(0)]。
    因为f(x)在区间(0,a),(b,a+b)上满足拉格朗日中值定理,因此分别存在ξ∈(0,a),η∈(b,a+b),使得f(a)-f(0)=af′(ξ),f(a+b)-f(b)=af′(η),从而有f(a+b)-f(a)-f(b)=a[f′(η)-f′(ξ)]。
    又f′(x)在(0,c)上单调减少,故f′(η)≤f′(ξ),故f(a+b)-f(a)-f(b)≤0,即f(a+b)≤f(a)+f(b)。
    解析: 暂无解析

  • 第13题:


    A.F(x)在x=0点不连续
    B.F(x)在(-∞,+∞)内连续,在x=0点不可导
    C.F(x)在(-∞,+∞)内可导,且满足F′(x)=f(x)
    D.F(x)在(-∞,+∞)内可导,但不一定满足F′(x)=f(x)

    答案:B
    解析:

  • 第14题:

    设奇函数f(x)在[-1,1]上具有二阶导数,且f(1)=1,证明:
      (Ⅰ)存在ξ∈(0,1),使得f'(ξ)=1;
      (Ⅱ)存在η∈(-1,1),使得f"(η)+f'(η)=1.


    答案:
    解析:
    【证明】(Ⅰ)因为f(x)是区间[-1,1]上的奇函数,所以f(0)=0.
    因为函数f(x)在区间[0,1]上可导,根据拉格朗日中值定理,存在ξ∈(0,1),使得
    f(1)-f(0)=f'(ξ).
    又因为f(1)=1,所以f'(ξ)=1.
    (Ⅱ)【证明】(方法一)因为f(x)是奇函数,所以f'(x)是偶函数,故f'(-ξ)=f'(ξ)=1.
    令F(x)=[f'(x)-1]e^x,则F(x)可导,且F(-ξ)=F(ξ)=0.
    根据罗尔定理,存在

    使得F'(η)=0.

    (方法二)因为f(x)是[-1,1]上的奇函数,所以f'(x)是偶函数,
    令F(x)=f'(x)+f(x)-x,则F(x)在[-1,1]上可导,且
    F(1)=f'(1)+f(1)-1=f'(1)
    F(-1)=f'(-1)+f(-1)+1=f'(1)-f(1)+1=f'(1)
    由罗尔定理可知,存在η∈(-1,1),使得F'(η)=0.
    由F'(x)=f(x)+f'(x)-1,知
    f(η)+f'(η)-1=0,f(η)+f'(η)=1.
    (方法三)因为f(x)是[-1,1]上的奇函数,所以f'(x)是偶函数,f(x)是奇函数,由(Ⅰ)知,存在ξ∈(0,1),使得f'(ξ)=1.
    令F(x)=f'(x)+f(x)-x,则F'(x)=f(x)+f'(x)-1,
    F'(ξ)=f(ξ)+f'(ξ)-1=f(ξ)
    F'(-ξ)=f(-ξ)+f'(-ξ)-1=-f(ξ)
    当f(ξ)=0时,f(ξ)+f'(ξ)-1=0,即f(ξ)+f'(ξ)=1.结论得证.
    当f(ξ)≠0时,F'(ξ)F'(-ξ)=-[f(ξ)]^2<0,
    根据导函数的介值性,存在,使得F'(η)=0.即f(η)+f'(η)-1=0
    故f(η)+f'(η)=1.
    【评注】本题是一道微分中值定理的证明题,其难点在于(Ⅱ)中辅助函数的构造.欲证f(η)+f'(η)=1,只要证f(η)+(f'(η)-1)=0,即,因此,应考虑辅助函数F(x)=[f'(x)-1]e^x;另一种思路是欲证f(η)+f'(η)=1,只要证f(η)+f'(η)-1=0,因此,应考虑辅助函数F(x)=f'(x)+f(x)-x.
    方法三中用到达布定理即(导函数的的介值性),这个定理不是<考试大纲》要求的考试内容,部分考生给出了此种解法,只要书写正确,不影响得分.

  • 第15题:

    (Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f'(ξ)(b-a);(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且=A,则存在,且.


    答案:
    解析:

  • 第16题:


    A. f(x)在[0,1]上至少有两个零点
    B.f'(x)在[0,1]上至少有一个零点
    C.f''(x)在[0,1]上至少有一个零点
    D.f'(x)在[0,1]内不变号

    答案:D
    解析:

  • 第17题:

    若函数f(x)在[0,1]上黎曼可积,则f(x)在[0,1]上( )。

    A.连续
    B.单调
    C.可导
    D.有界

    答案:D
    解析:

  • 第18题:

    已知函数



    (1)求f(x)单调区间与值域;
    (2)设a≥1,函数g(x)=x3-3a2x-2a,x∈[0,1]。若对于任意x1∈[0,1],总存在x0∈[0,1]使g(x0)=f(x1)成立,求a的取值范围。



    答案:
    解析:

  • 第19题:

    问答题
    设函数f(x)在闭区间[0,1]上可微,对于[0,1]上的每一个x,函数f(x)的值都在开区间(0,1)内,且f′(x)≠1,证明在(0,1)内有且仅有一个x,使得f(x)=x。

    正确答案:
    首先证明存在性。
    作辅助函数F(x)=f(x)-x,由题设00。
    根据连续函数介值定理,在(0,1)上至少存在一点ξ∈(0,1),使得F(ξ)=0。即f(ξ)-ξ=0。
    用反证法证明唯一性。
    设012<1,且f(x1)=x1,f(x2)=x2,即F(x1)=F(x2)=0。
    根据罗尔定理知,存在x0∈(x1,x2)⊂(0,1)使得F′(x0)=0,即f′(x0)=1,这与题目中f′(x)≠1相矛盾,故在(0,1)内有且仅有一个x,使得f(x)=x。
    解析: 暂无解析

  • 第20题:

    问答题
    设不恒为常数的函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且f(a)=f(b)。证明:在(a,b)内至少存在一点ξ,使得f′(ξ)>0。

    正确答案:
    因为f(x)不恒为常数,且f(a)=f(b),故必存在一点c∈(a,b),满足f(c)≠f(a)=f(b)。
    若f(c)>f(a)=f(b),f(x)在[a,c]上满足拉格朗日中值定理,故至少存在一点ξ∈(a,c)⊂(a,b),使得f′(ξ)=[f(c)-f(a)]/(c-a)>0。
    若f(c)0。综上命题得证。
    解析: 暂无解析

  • 第21题:

    问答题
    设函数f(x)在[0,1]上二阶可导,且f(0)=f(1)=0,证明:必∃ξ∈(0,1)使ξ2f″(ξ)+4ξf′(ξ)+2f(ξ)=0。

    正确答案:
    构造函数F(x)=x2f(x),由于f(x)在[0,1]上二阶可导,则F(x)也在[0,1]上二阶可导。
    又F′(0)=[2xf(x)+x2f′(x)]x=0=0,F″(x)=2f(x)+4xf′(x)+x2f″(x)。
    故根据泰勒公式有F(1)=F(0)+F′(0)(1-0)+F″(ξ)(1-0)2/(2!)=0,其中ξ∈(0,1)。
    所以F″(ξ)/2=[2f(ξ)+4ξf′(ξ)+ξ2f″(ξ)]/2=0。
    即2f(ξ)+4ξf′(ξ)+ξ2f″(ξ)=0。
    解析: 暂无解析

  • 第22题:

    问答题
    设f(x)在[0,π]上连续,在(0,π)内可导,证明:必∃ξ∈(0,π),使f′(ξ)+3f(ξ)cotξ=0。

    正确答案:
    构造函数φ(x)=sin3x·f(x),则由于f(x)在[0,π]上连续,故φ(x)也在[0,π]上连续。
    且φ′(x)=sin3x·f′(x)+3sin2xcosx·f(x)在(0,π)有意义。
    又φ(0)=φ(π)=0,根据罗尔定理得,必∃ξ∈(0,π),使φ′(ξ)=sin3ξ·f′(ξ)+3sin2ξcosξ·f(ξ)=0,即sin3ξ[f′(ξ)+3f(ξ)cotξ]=0。
    而(0,π)上sinξ≠0。故f′(ξ)+3f(ξ)cotξ=0。
    解析: 暂无解析

  • 第23题:

    问答题
    设f(x)在[a,+∞)上连续,在(a,+∞)内可导,且f′(x)>k>0(k为常数),又f(a)<0,证明方程f(x)=0在(a,a-f(a)/k)内有唯一实根。

    正确答案:
    由题设条件f(a)<0,k>0可得a-f(a)/k>a。
    令b=a-f(a)/k,根据拉格朗日中值定理得
    f(b)=f(a)+f′(ξ)(b-a)=f(a)+f′(ξ)[-f(a)/k]=-f(a)[f′(ξ)/k-1]>0,(a<ξk)
    由零点定理得f(x)=0在(a,b)内至少有一个实根。又f′(x)>0,即f(x)单调增加。故f(x)=0在(a,b)内仅有一个实根。
    解析: 暂无解析